0

0
0

文字

分享

0
0
0

裝回調控癌症細胞的「剎車」:第一代癌症標靶藥物「基利克」問世——《生命的法則》

八旗文化_96
・2018/02/04 ・5125字 ・閱讀時間約 10 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

到了 1970 年代末,已經出現兩大類人類癌症病因的證據,但這兩者之間看來並無關聯。病毒致癌基因和原致癌基因漂亮地解釋病毒會引發癌症,但這種癌症只限於動物;某些人類癌症會出現特殊的染色體變異,其一致性很具說服力,但只限於幾種癌症,而且其中涉及的基因並不明朗。那麼,這兩者癌症病因之間有關連嗎?

有的,這個關聯指出,癌症是調節失常所造成的疾病

調節失常而致癌:失控的正向基因

致癌原基因的錯誤變形以及負責除錯的抑癌基因失效,都會導致癌症的發展。圖/Pixabay

在最早發現的那些病毒致癌基因細胞原致癌基因中,在 src 之後找到的是小鼠的 v-abl 基因,這個基因來自於艾貝爾遜白血病病毒(Abelson leukemia virus),它在細胞中相似的基因是 c-abl 基因。

c-abl 和其他 c-src 等基因一樣,也存在於人類的基因組中。然而,後來科學家發現,c-abl 基因位在第九號染色體上,這個染色體也是羅利指出在慢性骨髓性白血症癌細胞中發生轉位的染色體,於是他們猜想:這有關連嗎?那些慢性骨髓性白血症患者癌細胞中第九號染色體斷裂的部位,靠近 c-abl 基因嗎?

-----廣告,請繼續往下閱讀-----

這是風險很大的推論。染色體很大,每個平均約有一千個基因,而 c-abl 基因可能存在於任何位置。一個由荷蘭與英國科學家組成的團隊研究了賓州染色體(第二十二號染色體),赫然發現其中有本來在第九號染色體上的 c-abl 基因——這個基因轉位到第二十二號染色體上了(下圖左)。

這項發現令人振奮,因為 c-abl 基因和人類癌症很可能有直接關連。研究者找出了第二十二號染色體中和 c-abl 基因相鄰的部位,好知道在慢性骨髓性白血症患者癌細胞中,c-abl 基因到底發生了什麼事。結果發現了值得注意的現象:在十七位病人中,c-abl 基因都轉移到第二十二號染色體上相同的位置。所以不只第九號染色體的片段轉位到第二十二號染色體上很重要,轉位到相同位置上更是重要。這樣的結果指出,c-abl 基因在第二十二號染色體上的位置才是重點。進一步的檢查還發現,c-abl 基因與另一個基因 bcr(意思是「斷裂點簇集區」,”breakpoint cluster region”)連接在一起。這兩個融合在一起的基因會製造一種異常的蛋白質,有著 c-abl 蛋白質的前端和 bcr 蛋白質的後端(下圖右)。

 

兩個基因融合在一起,變成了致癌基因。慢性骨髓性白血症(CML)的癌細胞中,原本在第九號染色體的 abl 基因,和第二十二好染色體的 bcr 基因融合再一起,這樣混合基因所產生的蛋白質,活性異常地高。 illustration by Leanne Olds.

總之,這樣的融合使得正常的原致癌基因變成了致死的致癌基因。研究人員比較正常的 c-abl 蛋白質和 bcr/abl 融合蛋白質兩者的活性之後,發現了箇中道理。c-abl 蛋白質屬於酪胺酸激酶(tyrosine kinases)這類酵素,其功用是把磷酸連接到蛋白質上。在蛋白質上增添或是移除磷酸,是另一種常見的蛋白質活性調節方式,讓蛋白質在活性狀態和無活性狀態之間變化。許多激酶屬於化學傳遞系統的一環,這個系統能把來自細胞外的訊息傳遞到細胞內部,好讓細胞複製、分化或是死亡。在細胞中,c-abl 酪胺酸激酶的活性通常很低,但是融合後的突變蛋白質,就像是莫納德和賈哥布所研究的「持續」突變一樣,總是處於「啟動」的狀態。

所以白血病是一種調節失常造成的疾病。在慢性骨髓性白血症中,原本受到控制的白血球複製功能,會因為 bcr/abl 融合蛋白而失控。這種活性超高的蛋白質會干擾細胞中多條訊息傳遞系統,因此細胞分裂的訊息會一直處於「開啟」狀態,就像是一直踩著油門的汽車。後來科學家發現,其他幾十種致癌基因中發生的突變,都是經由這種普遍的效應,與許許多多其他的癌症扯上關係。這意味癌症通常是調節失常所造成的疾病。

-----廣告,請繼續往下閱讀-----

發現致癌基因和它們的運作模式,對於瞭解癌症而言向前邁進了一大步,不過致癌基因只占癌症遺傳故事的一半而已。我們在這本書中已經討論過調節的邏輯,因此你可能會猜到另一半故事的內容。持續加油的油門當然不會是車子失控的唯一原因,那麼另一個機制是什麼呢?(提示:想想負向循環與負負得正的調節邏輯。)

如果你的腳沒有踩煞車,或是煞車線斷了,效果也是一樣。研究人員的確發現,在癌症出現的過程中,失去了遺傳「煞車」,是件稀鬆平常的事。

煞不住的癌症進程:缺席的抑癌基因

第一個遺傳「煞車」,是在一種罕見的眼睛癌症——視網膜胚細胞瘤(retinoblastoma)-—中發現的。這種癌症通常出現在幼兒身上,有時是家族遺傳的。解開視網膜胚細胞瘤遺傳奧秘的重要線索,來自於有些病患的兩個第十三號染色體都失去了一個部分。這表示某些基因的兩個拷貝都沒有了,對視網膜胚細胞瘤的形成而言非常關鍵。這個狀況與致癌基因只要有一個拷貝發生改變(例如 bcrabl),就足以成為癌症形成的關鍵事件,兩者恰恰相反。

遺傳「剎車」Rb 基因就位在人類第十三號染色體上。

若使用遺傳學的術語,我們會說致癌基因的突變是顯性的,因為即使正常的原致癌基因完好無缺,致癌基因還是會造成影響。相反地,視網膜胚細胞瘤突變是隱性的,因為要兩個基因拷貝都改變,才會使疾病成形。看來那個失去的基因的正常功能,是阻止或是壓抑癌症的形成,因此我們把這種基因稱為「癌症抑制基因」。

-----廣告,請繼續往下閱讀-----

科學家集中研究視網膜胚細胞瘤患者失去的 DNA,結果找到了視網膜胚細胞瘤基因(稱為 Rb)。Rb 基因的功能當然不是引發癌症,因為是 Rb 基因消失或變了樣之後,癌症才會出現的。之後研究了 Rb 蛋白質,發現它的功能是控制細胞循環的一個重要部分。細胞要複製時,會先複製 DNA,然後才分裂成兩個;這個過程受到嚴密的調控,而且分成多個階段進行。而 Rb 蛋白質作用在細胞循環早期階段的一個關卡上,能阻止 DNA 的複製。然而,當兩個 Rb 基因都沒有了的時候,細胞就能不受控制地持續複製。

正在分裂中的豬細胞,染成深紫色的部分即為乘載著遺傳資訊的染色體。圖/ZEISS Microscopy@Flickr

Rb 不是唯一能抑制癌症的基因,現在科學家已找出約七十個這樣的基因。Rb 也不只和視網膜胚細胞瘤有關,其他癌症中也見到了Rb  突變,例如骨肉瘤(osteosarcoma)和肺癌。

讓 Rb 失去活性的方法不只突變而已,當激酶把磷酸根加到 Rb 蛋白質上,也可以調節 Rb 蛋白質的活性-—上面的磷酸越少,活性越高;磷酸越多,活性就越低。許多致癌基因(包括 bcrabl)直接或間接的效應,是讓 Rb 蛋白上的磷酸增加而使得活性受到抑制,這樣細胞就會持續複製。事實上,幾乎在所有人類的癌症中,Rb 蛋白的活性都受到某種程度的抑制。

這裡又出現了我們之前見過的那種負向調節和負負得正調節邏輯。一般來說,Rb 蛋白能抑制細胞增殖;細胞增殖通常需要抑制這種抑制蛋白,才能繼續進行。不過 Rb 蛋白如果沒有活化(左)或是缺失了(右),細胞就會持續增殖:

-----廣告,請繼續往下閱讀-----

幾十年前,莫納德與賈哥布就推測,癌症是因為細胞複製的抑制子失去活性所造成的,Rb 蛋白的角色完全符合他們的推測(見本書第三章)。

知道了某些基因的突變會打破細胞生長的調節機制,那麼下一個重大的挑戰,就是想辦法把癌症細胞的「剎車」裝回去。

從實驗室走向臨床製藥

幾十年來,癌症療法通常不是用手術切除腫瘤,就是用放射線和混合各種藥物來殺死分裂中的細胞。後者是盲目攻擊,無法特別針對癌細胞,導致療效差異性高,因此使用受到限制,而各種副作用會讓人衰弱,甚至引發危險。因此,癌症研究一直致力於設計出可針對病人特定癌症治療,同時更有效、更安全的療法。現在這種希望成真了;這類藥物最先上市的是基利克(Gleevec),作用的目標就是當年羅利在餐桌上找到的突變。

File:Imatinib.svg
標靶藥物基利克(Gleevec)的藥效成分結構式,諾華公司將其命名為伊馬替尼(Imatinib)。

基利克就像其他類別的疾病最先出現的藥物那樣,差點夭折在研發的半路上。事實上,基利克的故事和第一個史達汀藥物的研發歷史相似到可怕。這次也是由於一位醫生他瞭解病人的需求,努力不懈地鼓勵藥物研發,才出現這個改變醫療歷史的偉大臨床成就。

-----廣告,請繼續往下閱讀-----

bcrabl 的基因轉位,產生了一個活性超強的激酶,使得 Rb 蛋白的抑制功能無法活化,導致細胞分裂不受控制。我們需要的是能搞定慢性骨髓性白血症負負得正邏輯的藥物——能抑制 bcrabl 融合蛋白的作用,讓這變節的酵素無法造成傷害。

萊登(Nick Lydon)與馬特(Alex Matter)這兩位在瑞士巴賽爾的汽巴—嘉基製藥公司(Ciba-Geigy)任職的科學家,知道許多致癌基因的產物是變異的激酶,那麼這些酵素的抑制劑應該能阻止癌細胞生長。他們不像遠藤那樣在大自然中尋找,或是依循製藥工業傳統的嘗試錯誤方式,而是使用稱為「理性設計」(rational design)的策略,設計出能夠緊密嵌入激酶活性部位並抑制活性的分子。如此一來,一般的「鑰匙」就沒辦法插入「鎖孔」中了。經過多年的化學合成與測試,他們得到了幾種有潛能的分子,其中一種分子能夠抑制正常的 c-abl 激酶。

萊登把這些化合物提供給一位認識的醫生,好測試其中是否有能對付慢性骨髓性白血症癌細胞的分子。這位在美國波特蘭奧勒岡健康與科學大學(Oregon Health & Science University)任職的醫生杜魯克(Brian Druker),對可能抑制 bcrabl 激酶活性的化合物深感興趣;更重要的是,他可以取得慢性骨髓性白血症患者的細胞。杜魯克發現,萊登給他的某種化合物在非常低的濃度下,能殺死這些細胞,但是正常的細胞不會死亡。

美國奧勒岡健康與科學大學的醫師杜魯克(Brian Druker)為萊登和馬特的慢性骨髓白血病藥物開發提供細胞檢體。圖/WikimediaCommons

就在萊登、馬特和杜魯克為此結果興奮不已時,製藥公司認為專門治療慢性骨髓性白血症的藥物沒有市場,這讓他們花了一年多的時間,才說服公司進一步進行動物實驗。首次在狗身上進行毒理測試的結果,讓人擔心這種藥物若在人類身上以靜脈注射的方式施用,可能並不安全。之後過沒多久,汽巴—嘉基製藥公司和山德世製藥公司(Sandoz)合併,成立了新的公司諾華(Novartis)。公司合併之後,這個藥物的發展一蹶不振,萊登也辭職了。

-----廣告,請繼續往下閱讀-----

癌症標靶療法問世

後來諾華的科學家用口服方式在狗身上持續進行試驗,但結果還是不行。有位毒物學家告訴馬特:「除非我死了,否則這個化合物不能給人使用。」

杜魯克沒有被結果嚇到,他的病人預後狀況非常糟糕:在診斷出罹患這個疾病之後,有 25~50% 會在一年內死亡,他能做的最多只是用現有療法稍微延長病人的壽命。杜魯克認為,藥物的毒性可以經由監測病人並且改變劑量來控制,因此他催促馬特「再給這個藥物一個機會」,馬特也持續對公司管理階層勸說這種藥物的需求。最後諾華的新任執行長華塞拉(Daniel Vasella)支持這個藥物進行人體試驗,這項研究在 1998 年 6 月展開,距離杜魯克在實驗室中用慢性骨髓性白血症癌細胞測試這個藥物,已經相隔五年。

杜魯克和其他兩位醫生開始在少數慢性骨髓性白血症患者身上使用這種藥物,並且逐漸增加藥物劑量,同時觀察患者的病況以及可能出現的副作用。這個藥物如果有效,可以從白血球數量的減少程度看出來。正常人的白血球數量是每微升(microliter,  μL)血液中有四千到一萬個,但是慢性骨髓性白血症患者會飆升到十萬到五十萬個。在藥物劑量低的時候,他們沒有觀察到療效,但在增高劑量之後,卻發現有些病人的白血球數量下降到正常範圍。用顯微鏡觀察病患的血液,可以看到帶有賓州染色體的細胞所占的比例減少了。這表示,這個藥物能夠成功殺死目標。

諾華把所有資源都投入在發展這個藥物上,實驗規模擴大,劑量增加,同時追蹤病患好幾個月。使用高劑量的病人有 97% 在六周後白血球數量恢復正常,四分之三的病人體內含有賓州染色體的細胞消失了。這不只是好結果,而是非常了不起的結果,在癌症化療上史無前例。美國食品與藥物管理局優先審查這個藥物,不到三個月就核准上市了,時間是 2001 年 5 月。

-----廣告,請繼續往下閱讀-----

 

有了基利克,慢性骨髓性白血症預後的狀況大幅改善,長期存活率(超過八年)躍升到 90%,而沒有使用這個藥物時只有 45%。和諾華公司預期的相反,這個藥物成為該公司的暢銷藥物,十年來銷售額達到二百八十億美元。2012 年,萊登、杜魯克和羅利因為對慢性骨髓性白血症的研究和治療,獲得著名的日本國際獎(Japan Prize)。

 

本文摘自《生命的法則:在賽倫蓋蒂草原,看見大自然如何運作》,八旗文化出版。

 

 





文章難易度
八旗文化_96
34 篇文章 ・ 18 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
2

文字

分享

0
1
2
對抗實體腫瘤癌症!新型免疫療法與 CAR-T 技術再升級
PanSci_96
・2023/03/12 ・3123字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

治療血癌的醫療新科技 CAR-T,是一種把 T 細胞做成活的藥品,釋放到身體內治療癌症的新療法,能夠把血液和淋巴系統裡的癌細胞清理得乾乾淨淨。

2022 年 11 月出現了一種新的免疫療法,目前已通過人體臨床一期試驗。其能夠攻克肺癌、乳癌、大腸癌等會長出實體腫瘤的癌症,而這些實體癌就是目前 CAR-T 還難以突破的瓶頸。

究竟這是什麼樣的療法?有沒有副作用呢?又有哪些障礙等待突破?

可以治療哪些癌症

這次公開的新醫療技術還沒有全球一致的名稱,我們暫時先採用生醫領域對這類操控 T 細胞科技的俗稱:個人化 T 細胞受體 T 細胞療法(personalized TCR T-cell therapies;本文使用「TCR-T 療法」稱之),目前已通過人體臨床一期試驗,其結果發表於《Nature》期刊。

-----廣告,請繼續往下閱讀-----

TCR 為 T 細胞受體(T cell receptor)的縮寫,是位在細胞表面的一種蛋白質。T 細胞則是人體白血球的一種,可以將其比喻成一批 24 小時在體內巡邏的軍隊,T 細胞會使用 TCR 來分辨正常細胞和外來異物,一旦偵測到病毒、細菌或癌細胞,就會馬上發動攻擊,把它們殺掉。

接著,我們進一步來看《Nature》上的 TCR-T 人體試驗報告。結果表明,一期臨床試驗總共治療 16 位病人,其中 5 個人腫瘤大小維持不變或縮小了一點,11 個人的腫瘤還是繼續長大。

看到這結果你可能會想:效果明明很差啊!

TCR-T 療法目前已通過人體臨床一期試驗,受試者均為實體癌症病人。圖/Envato Elements

是這樣的,TCR-T 療法對於專業人士來說,有三大看點:

-----廣告,請繼續往下閱讀-----
  1. 這 16 名患者都是實體癌症的患者,實體腫瘤是目前各種細胞療法公認,最難攻克的敵人,而且佔了超過九成的所有癌症患者人數。
  2. 受試病人的癌症種類分散:11 人是大腸直腸癌、2 人是乳癌,肺癌、卵巢癌、皮膚惡性黑色素瘤各 1 人。
  3. 治療後的病理檢查證實,TCR-T 療法使用的改造 T 細胞有聚集在腫瘤組織,並且留下了發動攻擊的痕跡。也就是說,TCR-T 確實能向導向飛彈一樣,準確追蹤癌細胞,而且不只追得到,還能展開轟炸!

這次的人體臨床試驗是為了確定 TCR-T 療法的安全性,因此先使用較低的劑量來治療;試驗結果驗證了其可行性,副作用也在可接受範圍內。故接下來的目標為調整出最佳劑量和確認治療條件,且有機會成為泛用型的療法,可治療多種癌症,不侷限於只能針對單一癌種。

製作原理與方法

TCR-T 療法可謂「基因工程+數位科技」攜手合作的成果。

概略來說,TCR-T 是融合了兩股力量才能實現的:一為電腦的演算法,用來推測要怎樣修改 T 細胞裡的特定基因;另一個是基因剪刀 CRISPR-Cas9,按照計算出來的結果去編輯細胞基因。

CRISPR 是這幾年非常熱門的基因編輯技術,簡單來說,這項技術運用了一套特殊的蛋白質加上核酸標記,能夠準確的切下一小段 DNA 序列,然後嵌入人工設計的 DNA;在這裡,我們需要改寫的就是 TCR 的基因。

TCR-T 療法為基因工程與數位科技合作的成果。圖/Envato Elements

人體的細胞會把自己內部製造、或是外來入侵的蛋白質用酵素切碎成片段,接著把這些碎片搬運到細胞表面,放置在一種叫做「第一型主要組織相容性複合物」(Major Histocompatibility Complex class I;簡稱 MHC-I)的分子的頂端。T 細胞會用 TCR 去判讀 MHC-I,如果發現某個細胞表面出現異常的碎片,便會判斷這個細胞已經被病毒、細菌感染或發生病變,馬上出手清除。

-----廣告,請繼續往下閱讀-----

TCR-T 療法便是用人工去改寫 T 細胞裡的 TCR 基因,使轉譯出來的 TCR 蛋白質分子結構發生變化,讓 T 細胞變得能夠認出癌細胞碎片,消滅掉腫瘤細胞。

製造 TCR-T 和進行治療的過程相當繁複,可拆解成 8 個步驟:

  1. 從患者身上抽血,並切下一小部分腫瘤組織,利用 DNA 定序,比對人體細胞和癌細胞的 DNA,找出腫瘤細胞的突變。
  2. 建一個 DNA 資料庫收錄這些腫瘤細胞突變,接著設計演算法,來預測哪些突變產生的蛋白質碎片最可能「挑釁」到 T 細胞,激起免疫反應。
  3. 從患者的血液樣本裡篩選 T 細胞,目標是找出 T 細胞帶有、能對這些蛋白質碎片產生反應的 TCR。
  4. 截錄這些 TCR 的基因片段,加以微調、複製。
  5. 用 CRISPR-Cas9 來改造沒有攻擊癌細胞能力的 T 細胞,插進新的 TCR 基因片段。
  6. 把這批改造後的 T 細胞放進培養槽,分裂繁殖成更大的數量,接著冷凍儲存。
    這時製備作業就已經完成,相當於養了一批腫瘤特種部隊,專門去獵殺癌細胞,接下來就是治療患者的階段了。
  7. 先讓患者接受化療,減少體內免疫細胞的數量。
  8. 把改造過的 T 細胞解凍注射進患者體內,觀察破壞腫瘤的療效,同時也要留意 T 細胞可能引發的副作用。
TCR-T 療法的製造過程。圖/參考資料 1

而 TCR-T 有可能導致的副作用有:「細胞激素症候群」或「神經毒性症候群」,例如受試病人中就有人因為細胞激素上升而發燒,也有 1 人發生腦炎,走路和寫字都困難。

新 CAR-T 療法持續進化

若將 CAR-T 和 TCR-T 比較,可以把 CAR-T 想像成是 T 細胞直接加裝追蹤系統的外掛,提升命中機會;而 TCR-T 則像是精準育種後的 T 細胞,挑選出有效的基因,用來修飾 T 細胞,強化原本就有的火力,讓它發揮得更好。

-----廣告,請繼續往下閱讀-----

CAR-T 療法亦持續突破,不斷進化出新型態的技術。現在已經發展出一種新技術,把一批 CAR-T 細胞封裝在特製的水凝膠裡面,其內還摻著能提高細胞活性的細胞刺激因子,打進人體後會慢慢崩解融化,釋放出裡面的 CAR-T 細胞;該技術發表在 2022 年 4 月的《Science》。

CAR-T 療法原始的做法是:把 CAR-T 細胞用吊點滴的方式注射到靜脈血管裡,順著血液循環去攻擊癌細胞;但是這樣做,CAR-T 細胞可能在人體環境裡面不斷消耗掉活力,如果攻擊對象是實體腫瘤的話,很容易後繼無力,沒辦法消滅掉腫瘤。此外,實體腫瘤還有各種方法來武裝自己,例如:改變腫瘤微環境來抑制 CAR-T 細胞的活性。

有了水凝膠封裝的方式,就可以緩緩一直釋放出 CAR-T 細胞,把細胞濃度維持在一定的範圍內,並且不斷釋出刺激因子,提升細胞活性,等於和腫瘤打持久戰,一點一滴把實體腫瘤瓦解掉。

CAR-T 細胞封於含有細胞刺激因子的水凝膠中。圖/參考資料 2

還有一種對策:讓 CAR-T 細胞自帶興奮劑。

-----廣告,請繼續往下閱讀-----

在腫瘤微環境之中,除缺乏氧氣外,腫瘤本身還會分泌出許多化學物質,抑制了 CAR-T 細胞的活性。

解決方法就是:在 CAR-T 細胞中再插進一段基因,讓細胞表面多長出另一種蛋白質,一旦碰觸到癌細胞,就會啟動 T 細胞裡的細胞激素分泌機制,這種細胞激素對於 T 細胞來說就如同興奮劑,能夠提升活性。

也就是說,CAR-T 一邊在奮力廝殺的時候,一邊還自己分泌能夠刺激自己興奮的物質,強化攻擊力和延長續航力,使 CAR-T 能夠破壞實體腫瘤;這項研究也於 2022 年底發表在《Science》。

隨著醫學科技進步,不論是 CAR-T 還是 TCR-T,是否能達成剷除實體腫瘤的終極目標、治好疾病,二者的發展令人期待。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

  1. Foy, S.P., Jacoby, K., Bota, D.A. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature (2022). https://doi.org/10.1038/s41586-022-05531-1
  2. Grosskopf, A. K. et al. Delivery of CAR-T Cells in a Transient Injectable Stimulatory Hydrogel Niche Improves Treatment of Solid Tumors. Science Advances (2022), 8(14). https://doi.org/10.1126/sciadv.abn8264
PanSci_96
1219 篇文章 ・ 2182 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
跨越五十年的醣化學之旅——翁啟惠院長專訪
研之有物│中央研究院_96
・2022/11/19 ・7078字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

台灣知名科學家:翁啟惠院長

如果問民眾「臺灣有哪些知名的科學家?」翁啟惠肯定是經常出現的答案。翁啟惠是國際知名醣化學家,曾擔任兩屆中央研究院院長,任期內積極將基礎科學與生醫產業串連起來。另一方面,翁啟惠也是投身研究 50 年的資深學者與好老師,共培養超過 500 位優秀弟子;他同時也是中研院、美國國家科學院的院士,更獲得沃爾夫化學獎、威爾許化學獎、四面體化學獎等榮譽。中研院「研之有物」專訪院內基因體研究中心合聘特聘研究員翁啟惠院士,向讀者介紹他一路走來的心路歷程。

圖│研之有物(資料來源|翁啟惠)

從臺大、中研院到 MIT的化學之旅

翁啟惠學術能量依舊飽滿,他是斯克里普斯研究院(Scripps Research)與中研院合聘的研究人員,兩邊各自都有實驗室和學生,受訪當天他本人在美國加州,透過視訊與「研之有物」團隊連線。

至今已 74 歲的醣化學大師翁啟惠,他是嘉義出生的子弟,初中考上臺南一中,高中三年級本已保送清華大學化學系,不過因為想挑戰臺大醫學系而赴考,可惜生物不好,加上自己喜歡化學,便進了第二志願臺大農業化學系。大學畢業,退伍後他隨即投身於科學研究,算算日子,已經是漫長的 50 年時光。

-----廣告,請繼續往下閱讀-----

翁啟惠原本就喜歡研究,他退伍後跟著恩師臺大化學系王光燦教授擔任助教一年後,再跟王教授來到中研院擔任助理,當時(1972 年)正值中研院生物化學研究所草創時期。後來翁啟惠升任「助理研究員」(類似大學的講師,目前已無此職位),前後服務長達 8 年,期間於 1977 年在職獲得碩士學位,碩論主要為臺灣蛇毒蛋白的合成,是翁啟惠多年來的研究成果。

王光燦(左)帶領翁啟惠(右)進入化學的研究殿堂,圖為 1999 年王光燦的退休餐會上,翁啟惠贈與恩師紀念品。
圖│翁啟惠

儘管翁啟惠出國前已發表超過 30 篇論文,小有所成,他依然希望更上層樓,因此 1979 年前往美國的麻省理工學院深造,接受恩師化學系教授喬治·懷特賽茲(George M. Whitesides)的指導。翁啟惠回憶,自己後來教育學生的理念與作法,多源自懷特賽茲的啟發。具備相當基礎之下,翁啟惠花費 3 年取得有機化學博士學位,又經歷 1 年哈佛大學的博士後研究,1983 年他就成為德州農工大學(Texas A&M University)的助理教授。

冷門且困難的「醣化學」

翁啟惠擅長的領域是「酵素化學」與「醣化學」,醣化學是什麼呢?翁啟惠解釋,維繫生命的蛋白質、核酸、脂質、醣類這些物質,以醣類最為複雜。除了材料化學的應用之外,翁啟惠選擇探索醣分子在生物醫學方面的應用。

醣類的結構變化多端,而且不容易人工合成。而翁啟惠的過人之處,正是出色的醣類合成能力!後來讓他奠定宗師地位的一鍋式酵素合成法程式化一鍋合成法醣晶片,到最近的廣效去醣化疫苗等研究主題,都歸功於他堅強的化學合成基礎。

-----廣告,請繼續往下閱讀-----

我們已經知道翁啟惠是醣化學的先驅,不過其實到博士畢業前,他大部分仍著重於蛋白質的合成,直到獨當一面後,才正式投身醣類。因為在當時的學界,核酸、蛋白質才是顯學,醣化學是非常冷門的領域,即便今日也不算太熱門,更是難以想像應用於研究疾病。

因此,翁啟惠早期在美國當助理教授時,曾經無法申請到研究經費,甚至有計畫評審認為他誤入歧途,所幸他的前瞻理念於 1986 年受到美國總統年青化學家獎(Presidential Young Investigator in Chemistry)的賞識,支持他站穩腳步,1987 年升任教授,才有後來的持續突破。

使用「酵素」來合成醣類

過去醣類研究不但冷門,而且難以合成,翁啟惠為什麼有勇氣選擇如此困難的題材?他的信心來自「酵素」 ,也就是生物用來催化反應的特殊蛋白質。傳統化學手段難以合成的複雜產物,有機會利用酵素來克服。

翁啟惠提到,1970 年代分子生物學興起,新問世的基因改造潛力無窮,人造胰島素開啟生技產業的濫觴;但是 1980 年代時,化學家多半仍很少接觸基因重組技術。他算是首波使用基因重組酵素,實現醣分子的化學合成。

-----廣告,請繼續往下閱讀-----

翁啟惠強調,很多新聞報導說他是生物醫學或生物科技專家,但其實他本質上一直是化學家,探索分子層次的操作,研究醣分子與醣蛋白的有機合成,只是醣化學研究的應用涉及生物醫學領域,介於化學和生物的交界。

做出過人成績後,翁啟惠成為各大研究機構爭邀合作的化學人才,本來預備前往加州的史丹佛大學。不過同樣在加州的斯克里普斯研究院(Scripps Research)半途冒出,院長勒納(Richer Lerner)親自邀請他過去瞧瞧。當時擅長生醫的 Scripps 想拓展至化學領域,正在招募人才,而涉足生物的化學專家翁啟惠正是合適人選。

Scripps 研究院是世界最好的研究機構之一,只收博士生,不僅有多位諾貝爾獎得主,更培育出不計其數的人才。翁啟惠回憶,他原本也對 Scripps 研究院不熟,Scripps 當時還沒有化學部門,但沒想到相談甚歡,1989 年他受邀擔任新成立的化學系講座教授,一做就做到 2006 年。現在,Scripps 研究院在化學生物領域是全美第一。

圖│翁啟惠

Scripps 研究院不僅環境怡人,學術資源也豐沛,讓翁啟惠能專注研究,而不必為經費擔憂。如今,他再度成為 Scripps 研究院的講座教授(Chair Professor),美國講座教授會有一筆來自民間的捐助基金,有充裕的學術資源可供自由運用。翁啟惠感慨地說,臺灣的學術捐款多為建造大樓等硬體,可是支持人才更重要, 這是未來臺灣值得學習的方向。

-----廣告,請繼續往下閱讀-----

醣化學原本是乏人問津的領域,然而翁啟惠開創了醣分子的有機合成方法,讓醣化學逐漸受到重視,他也獲得一系列耀眼成就。翁啟惠 2002 年當選美國國家科學院的院士,接著又榮獲多項化學領域的一級大獎:2014 年得到沃爾夫獎(The Wolf Prize),2021 年是威爾許獎(Welch Award),2022 年又獲頒四面體獎(Tetrahedron Prize)。

翁啟惠近年在化學領域不斷獲獎,也讓許多人好奇,再來會是諾貝爾化學獎嗎?

對於這個問題,翁啟惠認為可遇不可求,得獎也講究機運。不過每次獲獎,他都覺得是很好的鼓勵,激勵他繼續往前走。更重要的是,翁啟惠不是單打獨鬥,每次獎項表揚的成就,背後都是整個團隊的努力,因此這些榮譽正是對他整個團隊的肯定。

教師之夢:遍布全世界的學生

說到培養人才,這也是翁啟惠的強項,可惜過去媒體報導翁啟惠時卻很少觸及教育。談論如何作育英才的心得,翁啟惠眼睛炯炯有神,隔著太平洋都能感受到湧出螢幕的教育熱情。

-----廣告,請繼續往下閱讀-----

翁啟惠表示他小學時就想當老師,也是一輩子的志願。看到學生有成就,就會覺得很欣慰。他至今指導過的學生與博士後超過 500 位,遍及世界各地,包含美國、日本、韓國、英國、法國、德國、比利時等國家。儘管他自嘲也不是全世界都有,像是北韓就沒有學生。

翁啟惠對教學的想法,奠基於博士班老師懷特賽茲和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力

表達為什麼重要?試想,一個人花費多年辛苦取得學位,去應徵工作,卻只有幾分鐘能夠展現。善於表達,才能讓人覺得你的工作重要,呈現意圖以實現目標。而翁老師的第一課,總是在他與學生第一次碰面立刻開始:「為什麼找我當指導教授?」。給他滿意的回答,才能成為他的學生,成績並非最優先的考量。

翁啟惠(左1)對教學的想法,奠基於博士班老師懷特賽茲(右1)和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力。
圖│翁啟惠

培養學生獨立思考與研究的能力

翁啟惠的指導理念是「指示不要太詳細」,讓學生自己想問題、找資料、設計實驗。他只負責給大方向、從旁協助。因為講的太過具體,反而會限制學生獨立發展的空間。

-----廣告,請繼續往下閱讀-----

翁啟惠更精闢地剖析: 由學生獨立完成的成果,才會認為是自己的成績。否則即使成果再好,學生也可能覺得那是老師的東西,不是自己的成就。當學生獲得成功經驗,對自己有信心,此後便能更加獨立,建立正向循環。

另一方面,由於學生有大片空白可以填補,所以想法和能力不會受到過去積習所影響。翁啟惠提到,他有很多超乎預期的重要研究,是來自學生自己的嘗試。例如,研發出自動化一鍋式合成醣分子的歐曼(Ian Ollmann),原本在博士班四年級仍苦無突破,翁啟惠建議他發揮寫程式的專長,果然順利完成發表,後來甚至還轉戰高科技龍頭蘋果公司,至今已工作超過 20 年。

不過,讓學生自己摸索,失敗怎麼辦?翁啟惠認為失敗為成功之基礎,學生經歷失敗,才能培養耐心,累積應付挫折的經驗,打下未來成功的基礎。做研究的關鍵在於興趣,只要保持興趣,失敗也能學到新東西,而成功則能增強信心,有利於繼續成功。翁啟惠也鼓勵學生,與其等待老師指導,不如勇於嘗試、放手去做。

程式化一鍋多醣合成技術示意圖。
圖│研之有物(資料來源|中研院基因體中心資訊組)

研究院院長時期:積極推動產學交流與合作

翁啟惠任職 Scripps 研究院的期間,茁壯為世界第一流學者,各國爭相合作。如此耀眼的旅外人才,自然也受到當時中研院院長李遠哲賞識,促成翁啟惠於 2003 年回到臺灣,並在 2006 年到 2016 年擔任了兩屆院長。

-----廣告,請繼續往下閱讀-----

翁啟惠除了提升中研院的學術水準,他最重要的任務莫過於推動生物科技產業。因為翁啟惠認為產學互利共生很重要,有好的產業才能吸收廣泛的人才,例如臺灣的半導體產業,可以讓理工科系學生不愁出路,產生正向循環。

但另一方面,生物科技已成為各個科技大國的明星產業,臺灣每年有大批醫藥、生技的人才,卻沒有相應規模的產業,無法人盡其才。

為了推動生技產業,法規制度與產學合作園區都不可或缺。翁啟惠參考美國 1980 年的拜杜法案(Bayh-Dole Act),與專家合作完成臺灣版本的法規,將產學合作、技術轉移制度化。

法規的主要精神,就是由政府補助學術研究,做出初步成果後,再技術轉移給業者尋求商業化,後續再回饋給學術形成正向循環。園區方面,國家生技研究園區、中研院南部院區,都隨著翁啟惠的規劃步上軌道,讓基礎研究和產業創新能夠連結。

當然,產學間的轉換並不總是那麼順利。不過翁啟惠認為,如果學者發表的論文成果,同時也能促進產業,讓社會一同受益更好。這倒不是說所有學者都要投入產學合作,而是要慢慢建立起產學合作的文化,將研發成果回饋給社會。

往好處看,臺灣的生技產業與產值都持續進步中,而這條路依然任重而道遠。

產學合作的新潛力

翁啟惠是純學術研究出身,為什麼後來卻相當熟悉產學合作呢?時光要回溯到 1985 年。那時翁啟惠獲頒席艾勒學者生物醫學獎(Searle Scholar Award in Biomedical Sciences)——這是他少數獲得的生醫獎項之一,加上總統年青化學家獎,使他在美國學術界站穩腳步,也讓他有擔任企業顧問的機會。

從杜邦公司開始,初出茅廬的翁啟惠自認什麼都不懂,跟著前輩們邊看邊學,解決一家又一家企業的疑難雜症,而業界的顧問經驗同時也支持著自己想做的研究。翁啟惠逐漸累積產業經驗後,發現產學目標很不一樣,學者要優先發表論文,企業則是產品導向,講究解決問題。

訪談之中,翁啟惠回顧幾件很有意思的顧問經驗。例如,有公司希望解決可樂中代糖「阿斯巴甜」(Aspartame)在高溫下產生甲醇毒素的問題。也有公司想要改良汽車外層鍍膜,避免鳥糞腐蝕。

另外還有一個香菸公司的邀請讓翁啟惠印象深刻,那時很多重度菸癮者抽到頭痛,產品只能先緊急下架,菸商損失慘重;後來查明是製菸的紙漿中存在微量有害物質,若短時間抽很多根菸,大量攝取下會有立即危害。

這些顧問工作,很多都和翁啟惠醣化學的本業無關,卻帶給他開闊的視野與企業經驗。我們也可以注意到,美國政府與產業界相當有心培育有潛力的人才,即便尚無業界經驗,也願意讓新人去嘗試擔任顧問。

翁啟惠提到,美國東岸的新英格蘭周邊,是產業歷史最悠久的地區,也分佈許多老牌大企業;西岸的加州則不同,主要是新創小公司。不同地方各有特色,衍生出多變的產學文化。

相比之下,臺灣也具備潛力,就看經營出什麼文化。翁啟惠認為,我們已經建立民主自由的社會,若要更上層樓,臺灣萬萬不可孤立,要主動與國際交流,並發展自己的特色。

有交流,創意的火花才有可能碰撞,或許那個坐在你隔壁的人,就是未來的合作夥伴!翁啟惠提到,總部位於加州聖地牙哥,以基因定序闖出名號,至今仍蓬勃發展的因美納(Illumina)公司,其共同創辦人沃特(David Walt),正是他在麻省理工學院實驗室的同儕!有次邀請沃特到 Scripps 演講,剛好聽眾中有兩位感興趣的投資者,演講結束之後,沃特便與兩位投資者私下討論,就創辦了 Illumina 公司。

醣無所不在!未解的謎題還等著研究

儘管投身學術研究 50 年,醣化學將近 40 年,翁啟惠絲毫沒有停下腳步的意思。當訪問到「醣化學還有什麼潛力?」,一如談教育時的熱情,翁啟惠又展現出科學家對研究的熱愛。

在翁啟惠眼中,醣類有太多謎團等待解答。生物基因以 DNA 承載遺傳訊息,製作蛋白質行使功能,但是時常還要加上醣的參與,偏偏醣類不像核酸、蛋白質容易摸索。醣分子無法複製,只能用化學合成,細胞表面佈滿的醣分子結構不對,功能就不同。

以抗體為例,抗體是一種醣蛋白,我們知道抗體靠著專一性辨識去附著目標,消滅病毒。相對卻少有人意識到,抗體的一端附著目標後,另一端還要連接免疫細胞轉入後續反應才能消滅病毒,這步正是依靠醣分子,因此醣類會影響抗體的免疫功能

相對的,病毒需要依賴宿主細胞以便大量複製。不同細胞會賦予蛋白質產物不同的醣化修飾。研究發現即使遺傳物質相同的病毒,假如病毒外頭的醣化修飾不同,也會影響感染能力及免疫反應。由上呼吸道細胞產生的新冠病毒,感染力就比其他細胞更強。

對於開發疫苗,翁啟惠近年投入不少心血。疫苗刺激產生的抗體講究專一性,研發者要想辦法針對病毒結構來調整抗體及 T 細胞反應。翁啟惠與研究團隊的思路卻是另闢蹊徑,並非將病毒露出來的表面設為目標,而是要去掉病毒外層的「醣」衣,也就是「去醣化疫苗」。

因為病毒暴露在外的部分會持續改變,躲避特定抗體,但是被醣基包裹的位置不太會變,或許是人體免疫記憶更好的訓練對象。以此概念製成的蛋白質或 mRNA 疫苗,若是成功,便有機會成為所謂的「廣效疫苗」,接種一款疫苗就能應付病毒的多型變化,特別是難纏多變的流感病毒、冠狀病毒(例如 SARS-CoV-2)。

新冠病毒(SARS-CoV-2)的棘蛋白上面有醣化修飾(標示為橘色),醣基包裹的位置不太容易突變,因此去除表面的醣化修飾之後,可以進一步製成廣效疫苗。
圖│研之有物(資料來源|翁啟惠、中研院基因體中心)

除此之外,翁啟惠團隊也持續開發廣效癌症疫苗。用抗體對付癌症的想法十分誘人,其難處在於,疫苗刺激產生抗體,辨識外來入侵的異物加以攻擊;但是癌細胞是人體細胞變異産生,上頭存在的成分正常細胞常常也有,設定癌細胞打擊,反而會造成自體免疫的悲劇。

好消息是,癌細胞外頭有些醣化修飾,不同於正常細胞。翁啟惠的隊伍尋獲 Globo H 等幾個醣類分子,適合作為疫苗針對的目標。相關技術已經轉移給業者,正在進行第三期人體臨床試驗。這些圍繞醣分子作文章的創新疫苗令人期待,最終是否能投入實戰,仍有待分曉。

關於醣化學,翁啟惠將持續探究細胞表面醣分子所扮演的角色,以及醣分子和疾病的關係。

給年輕學生的話:「興趣是研究的動力

翁啟惠語重心長地提到,醣化學領域如今的樣貌取決於他們這些開拓者,未來則要看能否引發年輕人的興趣,因為未來是年輕人的。

現今教育強調跨領域,翁啟惠自己無疑也是跨領域的知名化學家,但是他提醒年輕人,跨領域絕對不等於什麼都要學、都要會。基礎還是要打好,跨領域的關鍵是有能力與其他領域的人互動合作。

翁啟惠近期便以國家生技醫療產業策進會會長的角色,積極促進醫界與電子業的對話。因為醫界知道市場需求,但不懂得製造;電子業擅長製造,但是對醫療需求沒有深刻理解。他希望營造合作交流的環境,創造新的可能性。

最後,翁啟惠提醒學生,做研究一定要長期投入,深入鑽研,若是短短幾年就轉換領域,只會愈來愈迷茫。興趣對研究生涯最重要,有興趣才有動力,而興趣的培養則來自日常的自我探索。

翁啟惠建議學生在跨領域之前,基礎還是要打好,而跨領域的關鍵是有能力與其他領域的人互動合作。
圖│翁啟惠
研之有物│中央研究院_96
296 篇文章 ・ 3402 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook