Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

裝回調控癌症細胞的「剎車」:第一代癌症標靶藥物「基利克」問世——《生命的法則》

八旗文化_96
・2018/02/04 ・5125字 ・閱讀時間約 10 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

到了 1970 年代末,已經出現兩大類人類癌症病因的證據,但這兩者之間看來並無關聯。病毒致癌基因和原致癌基因漂亮地解釋病毒會引發癌症,但這種癌症只限於動物;某些人類癌症會出現特殊的染色體變異,其一致性很具說服力,但只限於幾種癌症,而且其中涉及的基因並不明朗。那麼,這兩者癌症病因之間有關連嗎?

有的,這個關聯指出,癌症是調節失常所造成的疾病

調節失常而致癌:失控的正向基因

致癌原基因的錯誤變形以及負責除錯的抑癌基因失效,都會導致癌症的發展。圖/Pixabay

在最早發現的那些病毒致癌基因細胞原致癌基因中,在 src 之後找到的是小鼠的 v-abl 基因,這個基因來自於艾貝爾遜白血病病毒(Abelson leukemia virus),它在細胞中相似的基因是 c-abl 基因。

c-abl 和其他 c-src 等基因一樣,也存在於人類的基因組中。然而,後來科學家發現,c-abl 基因位在第九號染色體上,這個染色體也是羅利指出在慢性骨髓性白血症癌細胞中發生轉位的染色體,於是他們猜想:這有關連嗎?那些慢性骨髓性白血症患者癌細胞中第九號染色體斷裂的部位,靠近 c-abl 基因嗎?

-----廣告,請繼續往下閱讀-----

這是風險很大的推論。染色體很大,每個平均約有一千個基因,而 c-abl 基因可能存在於任何位置。一個由荷蘭與英國科學家組成的團隊研究了賓州染色體(第二十二號染色體),赫然發現其中有本來在第九號染色體上的 c-abl 基因——這個基因轉位到第二十二號染色體上了(下圖左)。

這項發現令人振奮,因為 c-abl 基因和人類癌症很可能有直接關連。研究者找出了第二十二號染色體中和 c-abl 基因相鄰的部位,好知道在慢性骨髓性白血症患者癌細胞中,c-abl 基因到底發生了什麼事。結果發現了值得注意的現象:在十七位病人中,c-abl 基因都轉移到第二十二號染色體上相同的位置。所以不只第九號染色體的片段轉位到第二十二號染色體上很重要,轉位到相同位置上更是重要。這樣的結果指出,c-abl 基因在第二十二號染色體上的位置才是重點。進一步的檢查還發現,c-abl 基因與另一個基因 bcr(意思是「斷裂點簇集區」,”breakpoint cluster region”)連接在一起。這兩個融合在一起的基因會製造一種異常的蛋白質,有著 c-abl 蛋白質的前端和 bcr 蛋白質的後端(下圖右)。

 

兩個基因融合在一起,變成了致癌基因。慢性骨髓性白血症(CML)的癌細胞中,原本在第九號染色體的 abl 基因,和第二十二好染色體的 bcr 基因融合再一起,這樣混合基因所產生的蛋白質,活性異常地高。 illustration by Leanne Olds.

總之,這樣的融合使得正常的原致癌基因變成了致死的致癌基因。研究人員比較正常的 c-abl 蛋白質和 bcr/abl 融合蛋白質兩者的活性之後,發現了箇中道理。c-abl 蛋白質屬於酪胺酸激酶(tyrosine kinases)這類酵素,其功用是把磷酸連接到蛋白質上。在蛋白質上增添或是移除磷酸,是另一種常見的蛋白質活性調節方式,讓蛋白質在活性狀態和無活性狀態之間變化。許多激酶屬於化學傳遞系統的一環,這個系統能把來自細胞外的訊息傳遞到細胞內部,好讓細胞複製、分化或是死亡。在細胞中,c-abl 酪胺酸激酶的活性通常很低,但是融合後的突變蛋白質,就像是莫納德和賈哥布所研究的「持續」突變一樣,總是處於「啟動」的狀態。

所以白血病是一種調節失常造成的疾病。在慢性骨髓性白血症中,原本受到控制的白血球複製功能,會因為 bcr/abl 融合蛋白而失控。這種活性超高的蛋白質會干擾細胞中多條訊息傳遞系統,因此細胞分裂的訊息會一直處於「開啟」狀態,就像是一直踩著油門的汽車。後來科學家發現,其他幾十種致癌基因中發生的突變,都是經由這種普遍的效應,與許許多多其他的癌症扯上關係。這意味癌症通常是調節失常所造成的疾病。

-----廣告,請繼續往下閱讀-----

發現致癌基因和它們的運作模式,對於瞭解癌症而言向前邁進了一大步,不過致癌基因只占癌症遺傳故事的一半而已。我們在這本書中已經討論過調節的邏輯,因此你可能會猜到另一半故事的內容。持續加油的油門當然不會是車子失控的唯一原因,那麼另一個機制是什麼呢?(提示:想想負向循環與負負得正的調節邏輯。)

如果你的腳沒有踩煞車,或是煞車線斷了,效果也是一樣。研究人員的確發現,在癌症出現的過程中,失去了遺傳「煞車」,是件稀鬆平常的事。

煞不住的癌症進程:缺席的抑癌基因

第一個遺傳「煞車」,是在一種罕見的眼睛癌症——視網膜胚細胞瘤(retinoblastoma)-—中發現的。這種癌症通常出現在幼兒身上,有時是家族遺傳的。解開視網膜胚細胞瘤遺傳奧秘的重要線索,來自於有些病患的兩個第十三號染色體都失去了一個部分。這表示某些基因的兩個拷貝都沒有了,對視網膜胚細胞瘤的形成而言非常關鍵。這個狀況與致癌基因只要有一個拷貝發生改變(例如 bcrabl),就足以成為癌症形成的關鍵事件,兩者恰恰相反。

遺傳「剎車」Rb 基因就位在人類第十三號染色體上。

若使用遺傳學的術語,我們會說致癌基因的突變是顯性的,因為即使正常的原致癌基因完好無缺,致癌基因還是會造成影響。相反地,視網膜胚細胞瘤突變是隱性的,因為要兩個基因拷貝都改變,才會使疾病成形。看來那個失去的基因的正常功能,是阻止或是壓抑癌症的形成,因此我們把這種基因稱為「癌症抑制基因」。

-----廣告,請繼續往下閱讀-----

科學家集中研究視網膜胚細胞瘤患者失去的 DNA,結果找到了視網膜胚細胞瘤基因(稱為 Rb)。Rb 基因的功能當然不是引發癌症,因為是 Rb 基因消失或變了樣之後,癌症才會出現的。之後研究了 Rb 蛋白質,發現它的功能是控制細胞循環的一個重要部分。細胞要複製時,會先複製 DNA,然後才分裂成兩個;這個過程受到嚴密的調控,而且分成多個階段進行。而 Rb 蛋白質作用在細胞循環早期階段的一個關卡上,能阻止 DNA 的複製。然而,當兩個 Rb 基因都沒有了的時候,細胞就能不受控制地持續複製。

正在分裂中的豬細胞,染成深紫色的部分即為乘載著遺傳資訊的染色體。圖/ZEISS Microscopy@Flickr

Rb 不是唯一能抑制癌症的基因,現在科學家已找出約七十個這樣的基因。Rb 也不只和視網膜胚細胞瘤有關,其他癌症中也見到了Rb  突變,例如骨肉瘤(osteosarcoma)和肺癌。

讓 Rb 失去活性的方法不只突變而已,當激酶把磷酸根加到 Rb 蛋白質上,也可以調節 Rb 蛋白質的活性-—上面的磷酸越少,活性越高;磷酸越多,活性就越低。許多致癌基因(包括 bcrabl)直接或間接的效應,是讓 Rb 蛋白上的磷酸增加而使得活性受到抑制,這樣細胞就會持續複製。事實上,幾乎在所有人類的癌症中,Rb 蛋白的活性都受到某種程度的抑制。

這裡又出現了我們之前見過的那種負向調節和負負得正調節邏輯。一般來說,Rb 蛋白能抑制細胞增殖;細胞增殖通常需要抑制這種抑制蛋白,才能繼續進行。不過 Rb 蛋白如果沒有活化(左)或是缺失了(右),細胞就會持續增殖:

-----廣告,請繼續往下閱讀-----

幾十年前,莫納德與賈哥布就推測,癌症是因為細胞複製的抑制子失去活性所造成的,Rb 蛋白的角色完全符合他們的推測(見本書第三章)。

知道了某些基因的突變會打破細胞生長的調節機制,那麼下一個重大的挑戰,就是想辦法把癌症細胞的「剎車」裝回去。

從實驗室走向臨床製藥

幾十年來,癌症療法通常不是用手術切除腫瘤,就是用放射線和混合各種藥物來殺死分裂中的細胞。後者是盲目攻擊,無法特別針對癌細胞,導致療效差異性高,因此使用受到限制,而各種副作用會讓人衰弱,甚至引發危險。因此,癌症研究一直致力於設計出可針對病人特定癌症治療,同時更有效、更安全的療法。現在這種希望成真了;這類藥物最先上市的是基利克(Gleevec),作用的目標就是當年羅利在餐桌上找到的突變。

File:Imatinib.svg
標靶藥物基利克(Gleevec)的藥效成分結構式,諾華公司將其命名為伊馬替尼(Imatinib)。

基利克就像其他類別的疾病最先出現的藥物那樣,差點夭折在研發的半路上。事實上,基利克的故事和第一個史達汀藥物的研發歷史相似到可怕。這次也是由於一位醫生他瞭解病人的需求,努力不懈地鼓勵藥物研發,才出現這個改變醫療歷史的偉大臨床成就。

-----廣告,請繼續往下閱讀-----

bcrabl 的基因轉位,產生了一個活性超強的激酶,使得 Rb 蛋白的抑制功能無法活化,導致細胞分裂不受控制。我們需要的是能搞定慢性骨髓性白血症負負得正邏輯的藥物——能抑制 bcrabl 融合蛋白的作用,讓這變節的酵素無法造成傷害。

萊登(Nick Lydon)與馬特(Alex Matter)這兩位在瑞士巴賽爾的汽巴—嘉基製藥公司(Ciba-Geigy)任職的科學家,知道許多致癌基因的產物是變異的激酶,那麼這些酵素的抑制劑應該能阻止癌細胞生長。他們不像遠藤那樣在大自然中尋找,或是依循製藥工業傳統的嘗試錯誤方式,而是使用稱為「理性設計」(rational design)的策略,設計出能夠緊密嵌入激酶活性部位並抑制活性的分子。如此一來,一般的「鑰匙」就沒辦法插入「鎖孔」中了。經過多年的化學合成與測試,他們得到了幾種有潛能的分子,其中一種分子能夠抑制正常的 c-abl 激酶。

萊登把這些化合物提供給一位認識的醫生,好測試其中是否有能對付慢性骨髓性白血症癌細胞的分子。這位在美國波特蘭奧勒岡健康與科學大學(Oregon Health & Science University)任職的醫生杜魯克(Brian Druker),對可能抑制 bcrabl 激酶活性的化合物深感興趣;更重要的是,他可以取得慢性骨髓性白血症患者的細胞。杜魯克發現,萊登給他的某種化合物在非常低的濃度下,能殺死這些細胞,但是正常的細胞不會死亡。

美國奧勒岡健康與科學大學的醫師杜魯克(Brian Druker)為萊登和馬特的慢性骨髓白血病藥物開發提供細胞檢體。圖/WikimediaCommons

就在萊登、馬特和杜魯克為此結果興奮不已時,製藥公司認為專門治療慢性骨髓性白血症的藥物沒有市場,這讓他們花了一年多的時間,才說服公司進一步進行動物實驗。首次在狗身上進行毒理測試的結果,讓人擔心這種藥物若在人類身上以靜脈注射的方式施用,可能並不安全。之後過沒多久,汽巴—嘉基製藥公司和山德世製藥公司(Sandoz)合併,成立了新的公司諾華(Novartis)。公司合併之後,這個藥物的發展一蹶不振,萊登也辭職了。

-----廣告,請繼續往下閱讀-----

癌症標靶療法問世

後來諾華的科學家用口服方式在狗身上持續進行試驗,但結果還是不行。有位毒物學家告訴馬特:「除非我死了,否則這個化合物不能給人使用。」

杜魯克沒有被結果嚇到,他的病人預後狀況非常糟糕:在診斷出罹患這個疾病之後,有 25~50% 會在一年內死亡,他能做的最多只是用現有療法稍微延長病人的壽命。杜魯克認為,藥物的毒性可以經由監測病人並且改變劑量來控制,因此他催促馬特「再給這個藥物一個機會」,馬特也持續對公司管理階層勸說這種藥物的需求。最後諾華的新任執行長華塞拉(Daniel Vasella)支持這個藥物進行人體試驗,這項研究在 1998 年 6 月展開,距離杜魯克在實驗室中用慢性骨髓性白血症癌細胞測試這個藥物,已經相隔五年。

杜魯克和其他兩位醫生開始在少數慢性骨髓性白血症患者身上使用這種藥物,並且逐漸增加藥物劑量,同時觀察患者的病況以及可能出現的副作用。這個藥物如果有效,可以從白血球數量的減少程度看出來。正常人的白血球數量是每微升(microliter,  μL)血液中有四千到一萬個,但是慢性骨髓性白血症患者會飆升到十萬到五十萬個。在藥物劑量低的時候,他們沒有觀察到療效,但在增高劑量之後,卻發現有些病人的白血球數量下降到正常範圍。用顯微鏡觀察病患的血液,可以看到帶有賓州染色體的細胞所占的比例減少了。這表示,這個藥物能夠成功殺死目標。

諾華把所有資源都投入在發展這個藥物上,實驗規模擴大,劑量增加,同時追蹤病患好幾個月。使用高劑量的病人有 97% 在六周後白血球數量恢復正常,四分之三的病人體內含有賓州染色體的細胞消失了。這不只是好結果,而是非常了不起的結果,在癌症化療上史無前例。美國食品與藥物管理局優先審查這個藥物,不到三個月就核准上市了,時間是 2001 年 5 月。

-----廣告,請繼續往下閱讀-----

 

有了基利克,慢性骨髓性白血症預後的狀況大幅改善,長期存活率(超過八年)躍升到 90%,而沒有使用這個藥物時只有 45%。和諾華公司預期的相反,這個藥物成為該公司的暢銷藥物,十年來銷售額達到二百八十億美元。2012 年,萊登、杜魯克和羅利因為對慢性骨髓性白血症的研究和治療,獲得著名的日本國際獎(Japan Prize)。

 

本文摘自《生命的法則:在賽倫蓋蒂草原,看見大自然如何運作》,八旗文化出版。

 

 





-----廣告,請繼續往下閱讀-----
文章難易度
八旗文化_96
34 篇文章 ・ 20 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
晚期肝癌新戰法:釔-90 微球體如何精準打擊腫瘤?
careonline_96
・2025/05/02 ・2765字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「那是一位晚期肝癌患者,發現時腫瘤約 10 公分,而且已經侵犯門靜脈。」高雄長庚醫院放射診斷科余俊彥醫師表示,「經過討論後,決定接受釔-90 治療,從肝動脈注入釔-90 微球進行體內放射治療。」

三個月後的電腦斷層影像顯示,腫瘤縮小到約 4 公分,於是接受手術治療。余俊彥醫師說,目前已經過 4 年,患者的狀況穩定,沒有復發的跡象。

肝癌的治療策略有很多種,大致可分成根除性治療與非根除性治療。余俊彥醫師解釋,根除性治療包括手術、射頻燒灼、肝臟移植等,非根除性治療包括肝動脈栓塞術(transcatheter arterial embolization)、免疫治療、標靶治療等。

由於肝癌早期沒有症狀,許多患者在發現時已是晚期,可能無法接受根除性治療,所以會先採用非根除性治療幫助腫瘤降期,如果可以讓腫瘤縮小甚至消失之後再去接受根除性治療,可以達到較好的存活率,腫瘤復發的機率也會比較低。

-----廣告,請繼續往下閱讀-----

我們的肝臟血管分為兩套系統,肝動脈與門靜脈系統。余俊彥醫師說,在正常肝臟組織中,約 70% 的血流來自門靜脈,30% 的血流來自肝動脈;而肝臟惡性腫瘤中,約 99% 的血流來自肝動脈。

肝動脈栓塞術便是利用此特性來治療肝臟惡性腫瘤。余俊彥醫師說,傳統的肝動脈栓塞術是經由肝動脈注射化療藥物,目前可使用釔-90 微球體,精準地將放射治療集中於腫瘤部位,減少對正常肝臟組織的傷害。

晚期肝癌釔-90微球體體內放射治療
圖 / 照護線上

釔-90(Yttrium-90)可釋放β射線,半衰期約 64.1 小時。余俊彥醫師說,由於肝臟惡性腫瘤的血液供應主要來自肝動脈,會吸附大部分釔-90微球體,並緩慢釋放β射線,殺傷腫瘤細胞。β射線的穿透深度平均約 0.25 公分,最大約 1.1 公分,放射能量主要侷限於腫瘤內部,正常肝臟組織受到的輻射劑量相對較少。針對無法手術切除晚期肝癌,可以有效縮小或控制腫瘤。

釔-90 治療通常會從股動脈進行穿刺,在X光的導引下將一條細導管放入肝臟血管內。醫師會先進行血管攝影,確定肝臟血管的位置、腫瘤的位置與大小。余俊彥醫師說,為了確保釔-90 微球體不會流入供應其他器官的血管,所以必須先注入測試用的微球體 Tc-MAA 藥物。

-----廣告,請繼續往下閱讀-----

後續會到核子醫學科做全身性掃描,看看 Tc-MAA 微球體的分布。余俊彥醫師說,確認 TcMAA 微球體主要集中於肝臟腫瘤,才能進行釔-90 治療。大約一週後,會從相同的位置注入釔-90 微球體。

「下圖是一個晚期肝癌患者的血管攝影,肝臟散佈了 15 顆大大小小的腫瘤。」余俊彥醫師說,「經過肝癌團隊討論後,患者接受釔-90 治療。後續追蹤電腦斷層影像,發現肝臟腫瘤都消失了,於是安排肝臟移植。取下來的肝臟交由病理科醫師檢查,確認15顆肝臟腫瘤已全數壞死,達到完全緩解。」

釔-90治療幫助晚期肝癌降旗、改善預後
圖 / 照護線上

目前於高雄長庚醫院接受釔-90 治療的晚期肝癌患者中,26.4% 達到完全緩解,52.8% 達到部分緩解。其中有 56 位患者是做全肝治療,也就是整個肝都是腫瘤的狀況,這些患者的一年存活率是 73%,第二年、第三年存活率也達到六成以上。余俊彥醫師說,這些都較晚期的肝癌患者,最大的腫瘤有 19 公分,能夠達到這樣的結果,是相當優異的成效。

接受釔-90 治療後,多數患者沒有明顯的不舒服。余俊彥醫師說,部分患者可能出現腹痛或發燒,不過大多可透過症狀治療,休息一、兩天後即可改善。

-----廣告,請繼續往下閱讀-----

釔-90 主要釋放 β 射線,組織穿透力僅約 1.1 公分,絕大部分能量都集中於體內腫瘤區域,整體而言相對安全。

接受釔-90治療後的注意事項
圖 / 照護線上

為了避免他人接受到些微遊離輻射,接受釔-90 治療一週內不要搭乘必須與鄰座乘客共坐兩小時以上的交通工具(包括飛機)、一週內不與伴侶共枕、一週內避免與小孩或孕婦親密接觸、一週內每次與他人的近距離接觸不超過半小時,若接觸時間延長,建議與其他人保持兩公尺以上之距離。在接受治療後 24 小時內,少量輻射會殘留在尿液中,病人需坐著上廁所,並記得沖刷馬桶兩次。

肝癌治療持續進步,患者可能需要搭配多種治療方式。肝癌團隊會根據每個患者的病情、肝臟功能、健康狀況,選擇合適的治療組合,幫助達到較佳的預後!

筆記重點整理

  • 由於肝癌早期沒有症狀,許多患者在發現時已是晚期,可能無法接受根除性治療,所以會先採用非根除性治療幫助腫瘤降期,如果可以讓腫瘤縮小甚至消失之後再去接受根除性治療,可以達到較好的存活率,腫瘤復發的機率也會比較低。
  • 在正常肝臟組織中,約 70% 的血流來自門靜脈,30% 的血流來自肝動脈;而肝臟惡性腫瘤中,約 99% 的血流來自肝動脈。傳統的肝動脈栓塞術是經由肝動脈注射化療藥物,目前可使用釔-90 微球體,精準地將放射治療集中於腫瘤部位,減少對正常肝臟組織的傷害。
  • 釔-90(Yttrium-90)可釋放 β 射線,半衰期約 64.1 小時。肝臟腫瘤會吸附大部分釔-90微球體,並緩慢釋放β射線,殺傷腫瘤細胞。β射線的最高穿透深度約僅 1.1 公分,放射能量主要侷限於腫瘤內部,正常肝臟組織受到的輻射劑量相對較少。針對無法手術切除晚期肝癌,可以有效縮小或控制腫瘤。
  • 目前於高雄長庚醫院接受釔-90 治療的晚期肝癌患者中,26.4% 達到完全緩解,52.8% 達到部分緩解。其中有 56 位患者是做全肝治療,也就是整個肝都是腫瘤的狀況,這些患者的一年存活率是 73%,第二年、第三年存活率也達到六成以上。這些都較晚期的肝癌患者,最大的腫瘤有 19 公分,能夠達到這樣的結果,是相當優異的成效。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
乳癌治療不再冗長!新一代標靶療法更省時省力
careonline_96
・2025/04/04 ・2169字 ・閱讀時間約 4 分鐘

圖/照護線上

30 多歲的王小姐因為健檢而確診早期乳癌,後續接受手術治療,根據病理報告的結果,醫師建議術後進行 HER2 雙標靶治療。

「醫師,如果做 HER2 雙標靶治療,是不是每次都需要兩、三個小時呀?」王小姐問,由於平時工作相當忙碌,讓她很擔心後續治療的安排。

「依照妳的狀況,HER2 雙標靶治療能夠降低復發風險。」醫師說,「因傳統 HER2 雙標靶治療是透過靜脈輸注給藥,的確需要比較長的時間;現在已經有皮下注射新劑型,每次只要幾分鐘,可大幅縮短治療時間,方便很多!」

ER2雙標靶治療
圖/照護線上

根據腫瘤基因型態分類,約有 20% 屬於「HER2 陽性乳癌」。HER2 陽性乳癌因惡性度較高,過去被認為是預後較差的亞型,容易復發、轉移,但在 HER2 標靶藥物問世後,治療成效已大幅提升。亞東紀念醫院腫瘤科暨血液科蕭吉晃醫師表示,HER2 的中文全稱是『第二型人類上皮成長因子受體』,若腫瘤出現 HER2 過度表現時,代表癌細胞複製能力強、生長快速,也較容易產生抗藥性。

-----廣告,請繼續往下閱讀-----

針對 HER2 陽性乳癌採用 HER2 標靶藥物對症下藥,已成為乳癌治療的準則。HER2 標靶治療的進展也由一開始的單標靶演進到目前的雙標靶,應用期別也由晚期逐步推進至早期。蕭吉晃醫師指出,在晚期乳癌治療,HER2 雙標靶治療比單標靶更有機會能延長整體存活期,並延緩疾病惡化;於早期乳癌治療,則是針對高風險的病患,在術前就建議採用 HER2 雙標靶治療,以提高治療反應,增加達到病理完全緩解(pCR)的機率,降低復發風險。「HER2 雙標靶治療可說對於早期和晚期的患者都扮演重要角色!」蕭吉晃醫師強調。

ER2雙標靶治療,早期、晚期乳癌都受惠
圖/照護線上

惟傳統 HER2 雙標靶治療採靜脈輸注,給藥時間長。蕭吉晃醫師解釋,為避免輸注或藥物過敏反應,首次給藥輸注時間會拉更長,每個藥物都需要約 90 分鐘,因此,光是雙標靶本身的給藥時間就需要約 3 小時,另外還要加上化療、等待、留院觀察時間等,患者每次治療幾乎都要半天起跳,對患者與家人的生活、工作造成影響。

所幸,目前已發展出 HER2 雙標靶藥物新的皮下注射劑型,治療效果與靜脈注射相當,但可大幅縮短治療時間,大幅提升便利性,節省患者時間。蕭吉晃醫師說,皮下注射劑型不用透過靜脈滴注給藥,每次透過皮下注射緩慢推入藥物即可,將時間所短到首次給藥只要 10 到 15 分鐘,後續隨著注射次數增加,若沒有過敏現象,注射時間更可以縮短至 5 至 8 分鐘!同時採用皮下注射也有機會不用用裝設人工血管,也不需要找血管打針,減少患者的心理壓力與不適。

蕭吉晃醫師進一步說明,皮下注射 HER2 雙標靶治療是經特殊設計的劑型,因此能夠確保藥物的分散和吸收,根據臨床試驗結果顯示,皮下注射 HER2 雙標靶藥物的療效與傳統靜脈注射相當,療效與安全性皆已獲得確認,患者可安心選擇。

-----廣告,請繼續往下閱讀-----
皮下注射ER2雙標靶治療,提升便利性
圖/照護線上

HER2 雙標靶治療筆記重點整理

  • HER2 陽性乳癌惡性度較高,過去被認為是預後較差的亞型,容易復發、轉移,不過在 HER2 標靶藥物問世後,治療成效已大幅提升。
  • HER2 雙標靶治療對於早期和晚期的患者都扮演重要角色:在晚期乳癌治療,HER2 雙標靶治療比單標靶更有機會能延長整體存活期,並延緩疾病惡化;於早期乳癌治療,則是針對高風險的病患,在術前就建議採用 HER2 雙標靶治療,以提高治療反應,增加達到病理完全緩解(pCR)的機率,降低復發風險。
  • 相較傳統 HER2 雙標靶治療採靜脈輸注,患者每次治療需耗費數個小時;新劑型採皮下注射,將每次治療時間縮短到僅 5-8 分鐘,患者有機會於一小內完成治療,大幅提升治療便利性。
  • 採用皮下注射 HER2 雙標靶治療,有機會不用裝設人工血管,也不需要找血管打針,減少患者的心理壓力與不適。
  • 皮下注射 HER2 雙標靶藥物的療效與傳統靜脈注射相當,療效與安全性皆已獲得確認,患者可安心選擇。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。