0

0
1

文字

分享

0
0
1

為什麼諾貝爾生醫獎頒給生理時鐘研究值得我們注意?──《科學月刊》

科學月刊_96
・2017/11/22 ・2855字 ・閱讀時間約 5 分鐘 ・SR值 588 ・九年級

文/林翰佐|銘傳大學生物科技學系副教授,《科學月刊》總編輯。

2017 年諾貝爾生理暨醫學獎項頒給了霍爾、羅斯巴希與楊三位教授,表彰他們在發現生物時鐘控制之分子機轉研究上所作的貢獻。圖/Pixabay

科學界的年度盛事,諾貝爾獎(Nobel prize)的得獎名單陸續的在10 月上旬公布。在生理暨醫學獎項中,今年頒給了霍爾(Jeff­rey C. Hall)、羅斯巴希(Michael Rosbash)與楊(Michael W. Young)三位教授,表彰他們在發現生物時鐘(circadian rhythm)控制之分子機轉研究上所作的貢獻。

雖說三位教授實至名歸,但今年這個獎項的頒發還是令人玩味的。現今生物科技研究發展大多以臨床應用等議題為顯學,連本次的受獎人之一的霍爾都公開的抱怨,自己因得不到研究經費上的補助,在 10 年前已經不得已退出了科學研究的工作。顯然的,諾貝爾獎遴選委員會繼去年之後,再度提出有別於世俗的看法,以實際的行動將榮耀歸諸於這個小眾的基礎領域研究。

《科學月刊》在每年 12 月號都會籌辦諾貝爾獎專輯,邀請合適的專家撰文介紹當年得獎者研究上的具體內容,敬請各位讀者期待。在本篇文章中,我更想談談的是,除卻對科學實質內容的關注,非科學領域的社會大眾更想知道的,或許是更形而上的問題;像諾貝爾獎這樣受到關注的著名獎項,為何會對這樣的小眾研究青睞?

-----廣告,請繼續往下閱讀-----

技術促進研究思維的轉變

人類對於生命科學的理解,在近百年中呈現出相當大的變化。傳統的生物學以觀察為主,或許輔以一些實驗來驗證或否證自己的假設。在那個年代當中,生物學家必須運用想像力,透視著實驗結果所代表的生物學意義(biological meaning),推出帶有哲理想像的假說;像是遺傳學之父孟德爾藉由豌豆雜交試驗,歸納出遺傳學中著名的分離率與自由組合率,在全然不知 DNA 為何物的時空背景之下,抽象著去想像「基因」這樣的概念。

遺傳學之父孟德爾。圖/WikimediaCommons

1950 年代以後的生命科學是截然不同的型態。DNA 雙股螺旋構型的發現,分子生物技術的發展,到目前高通量(high through-put)實驗技術,次世代基因定序技術(next generation sequencing)與電腦科技的相結合,使得研究趨勢變得唯物至上;研究成就往往由一張張明確的實驗數據所累積。現今的生命科學家比較少有機會,體會那個學術最高位階榮銜當中冠名為 PhD(拉丁文:Philosophiae Doctor, 意即「哲學博士」,Doctor of Philosophy)所蘊含的哲學意義。不過在這樣的轉變之下,是否讓科學活動進行的同時,在末端研究數據累積的競逐之間,失去了更為有高度的、研究上的方向指引。更近一步的,這些研究的目的是什麼?花著預算執行的科學實驗背後所楬櫫的生命現象與人類自省的反思又有些什麼?隨著生物科技重大的進展,這類深入性的討論並未同步的發展與受到重視。

生命科學研究與經費

生命科學研究的另一項重大的轉變發生於跟金錢方面密不可分的糾葛。環顧一世紀以前,生命科學的研究者大都以隨手可取的材料進行實驗。諾貝爾生理暨醫學獎得主(1935 年)德國科學家斯培曼(Hans Spemann)在驗證兩生類胚胎灰月區(gray crescent)作用時將胚胎勒束所使用的,其實只是自己老婆大人的一根秀髮。

隨著科技技術的進步,對於實驗結果的證據力也逐步的提高,這意味者需要投入更多的人力與財力,使得學術競爭從原本的知識競賽,變成知識外加經濟實力的競賽。想要投入分子生物學領域的科學研究,都得先行掂量手頭上能有多少的研究資源,科學不再是那麼的理想至上,而會因所處環境的現實而有所妥協。

-----廣告,請繼續往下閱讀-----
現代的分子生物學研究,光是建立實驗室就已經是一筆相當高的支出。圖/WikimediaCommons

在目前,一個基本的分子生物學實驗室的建構大都需要 700~1000 萬新臺幣的建置費用,這還不包括更高端的,像是流式細胞儀(flow cytometry)、共軛焦顯微鏡(confocal microscopy)等更為貴重的研究利器。除了儀器價格不斐之外,研究中所使用的材料也是相當的昂貴。像是培養細胞所使用的胎牛血清(fetal calf serum)僅 500 毫升一瓶要價達新臺幣 13000~15000 元,而想利用生物晶片(biochip)完整的說明一項議題,光在材料上的花費動則便在數百萬元新臺幣。現代的生命科學研究者,往往需要汲汲營營的利用各種機會籌措研究資金,以維持實驗室的運作,並確保自身的研究在技術水平上能得到世界頂尖雜誌的青睞,研究上經費的門檻越來越高,大者恆大,唯有成為學術山頭才能掌握有利的資源。

只為了瞭解生命現象的生物時鐘研究

北京大學講座教授饒毅博士在諾貝爾獎公布之後以「勇氣與運氣」為題為文,回顧了近 40 年來利用果蠅作為生物時鐘的整個歷史。說實話,即便到了現在,我們對於生物時鐘存在的生物意義仍然所知有限,對於生物時鐘的相關研究在未來的可能應用性瞭解也甚少。如果時空背景轉移到現在,這樣的研究恐怕更顯乏人問津、曲高和寡。基於單純的想要了解生命,生物時鐘的研究先驅們投入相當的心力從事具有史詩規模的海選活動,嘗試著進行著僅具有百萬分之一機會(其實當時應該不瞭解機率有那樣的低)來找尋生物時鐘異常的果蠅株,這種不流世俗、勇於求真,也許才是科學之所以得以跨越時代,留於青史的真正精神。

諾貝爾獎的意義

諾貝爾獎是依據瑞典化學家諾貝爾的遺囑,在1901 年起開始頒發的獎項。獎金的來源是來自其遺產中的 3100 萬瑞典克郎成立基金會,運用其做為基金會運作及獎項獎金之用。諾貝爾獎的獎金或許並沒有想像中的高,近幾年平均各類獎項的金額約在新臺幣 3300 萬元左右,若多人共同獲得則需均分其獎金。以今年生理暨醫學獎的得主為例,平均一人大約獲得約 1100 萬新臺幣。

歷經百餘年的諾貝爾獎其實在過程也風風雨雨,有些獎項的提名過程就充滿了爭議,有些得獎人事後充滿爭議性的發言也使這個獎項蒙塵。例如華生博士(James D. Watson);DNA 雙股螺旋構型的發現者之一的一段插曲。在 2007 年,年逾 79 歲高齡的他發表一連串公開針對人種及女性的不當發言,使得這位當代大師離開了工作一輩子的冷泉港實驗室,人氣急劇下墜。在 2014 年華生拿出他的諾貝爾獎金牌交由專業拍賣公司進行拍賣,並將部分所得捐贈學術單位以挽回名聲。部分學者也批評得獎者不得為三人以上的規定,現今的科學研究多半為群體合作產生的結果,現行的規定難免有所遺珠。

-----廣告,請繼續往下閱讀-----
年逾 79 歲高齡的華生發表一連串公開針對人種及女性的不當發言,使得這位當代大師離開了工作一輩子的冷泉港實驗室,人氣急劇下墜。圖/WikimediaCommons

即便諾貝爾獎本身的不完美。但在學術上,我認為諾貝爾獎的評審單位仍能善盡職守的,以長遠的眼光來看待科學發展與人類之間的關聯性,並以此啟發後輩對學術活動的認知。有人批評諾貝爾獎的頒發是一種變相的「英雄主義」,它的確是,但唯有英雄,才能鼓舞人心,鼓勵我們在這從善如流的世界上做些不一樣,突破性的選擇。

本文選自《科學月刊》2017年11月號

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3701 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
近零碳建築新趨勢:從節能創意到 2050 淨零轉型
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/23 ・3701字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 建研所 委託,泛科學企劃執行。 

根據聯合國統計數據,全球每年 38% 的溫室氣體排放,並非來自道路上的交通工具,而是由「現代都市與建築」所造成的。

我們如今站在兩條路徑的十字路口。一條是依賴更多水泥建築與空調系統來抵禦夏季酷暑,然而這樣的選擇只會加劇室外大氣的惡化。另一條則是徹底改革建築、用電、設計與都市規劃,不僅尋求低碳排放的建築方式,還要找出節能降溫的解決方案,實現事半功倍的效果。

然而,我們是否真的能將建築業的碳排放歸零?

-----廣告,請繼續往下閱讀-----

建築的溫室氣體哪裡來?

在建築物 60 年的生命週期中,建材的碳足跡其實只佔 9.8%,因為建築一旦完成後,材料不會頻繁更換。相反,日常生活中的用電才是主要的碳排來源,占了 83.4%,其中大部分來自冷氣、照明和各種電器。

當然,讓大家集體關燈停用電器「躺平」來拯救地球,顯然不切實際。既然完全不消耗能源是不可能的,我們應該尋找更現實的解決方案。

現在就來看看全球七棟零碳建築之一——成大的「綠色魔法學校」,臺灣首座淨零建築,如何運用建築技術,成為當代永續建築的典範。這些技巧中,有哪些能應用到你我家中呢?

綠色魔法學校。圖 / 內政部建築研究所

為了省電要把煙囪塗黑、吸收更多太陽光?

都市裡,我們最大的挑戰之一就是夏天的高溫,水泥建築群在陽光的烘烤下,變成一個個巨大的窯爐。為了解決這個問題,綠色魔法學校在國際會議廳裝了一個煙囪,不過這不是為了讓窯爐更熱,而是用來降溫的。

-----廣告,請繼續往下閱讀-----

煙囪為什麼都都要蓋的那麼高?原來煙囪越高,上下的溫差越大。熱空氣因為密度低而向上移動,產生熱對流。溫差越大,這個熱對流就越強烈,這就是所謂的「煙囪效應」。在要幫室內降溫的情況下,我們的目的是產生更強的煙囪效應,抽走熱空氣,讓室溫下降。但這棟建築裡沒有火爐,而溫差不夠大時,這效應會變得微弱,那該怎麼辦?

綠色魔法學校提出了一個大膽的解法:在煙囪南面下半部改裝透明玻璃窗,並將煙囪內部塗成黑色,還加裝了黑色烤漆鋁板,這樣可以最大限度地吸收太陽光。每當艷陽高照,這個不插電的的「自然通風系統」就能自動啟動,創造局部的熱對流,帶動整根煙囪的熱氣向上移動,為室內降溫,達到節能效果。以熱制熱,完全反常識。

綠色魔法學校的特殊煙囪設計,玻璃引入太陽光。圖 / 泛科學攝影畫面截圖

幫室內降溫的最大原則是:通風。

實際上,不是人人家裡都有煙囪。但如果建築的高處沒有任何窗戶或通風設備,熱空氣就是會從屋頂一路往下蓄積在室內。因此,你也一定在許多工廠或民宅的屋頂看過一個不斷旋轉的小風扇,它們也是有異曲同工的效用。雖然不是高聳的煙囪,但特殊的渦輪構造,風吹過就會開始轉動,並連帶空氣排出室外。是個不用插電的通風球。

-----廣告,請繼續往下閱讀-----
綠色魔法學校館內動畫-室內通風排熱補冷。圖 / 泛科學攝影畫面截圖

綠色魔法學校的煙囪就是個效能更強的換氣機,足以讓 300 人大型會議廳的換氣次數,高達每小時 5 到 8 次,甚至能在室內颳起風速每秒 0.5 公尺的微風,是最舒適的環境。這些利用熱氣密度的差異來改善室內溫度的方法,又稱為「浮力通風」。

為了把通風貫徹到底,綠色魔法學校在建築的兩面裝設大量窗戶以及吊扇,來讓水平也能通風。這些我們習以為常的裝置,其實才是關鍵。靠吊扇的一點點電力讓自然風可以自由進出,耗費的能源,遠比冷氣還要少得多。

幫空調省電的最後一招,就是微環境控制。

綠色魔法學校透過屋頂植栽與造林改善微氣候。圖 / 綠色魔法學校

實際上魔法學校內還是找的到空調設備,並不是完全拔除不用。除了選用最高效率的主機,以及把室內循環做到最好以外,降低周遭環境溫度才能減低冷氣的負擔。要降低水泥叢林的熱島效應,需要植被與水體來做溫度調適。

在太陽照射下,水泥屋頂表面最高可以達到攝氏 70 度,如果屋頂有種植植栽,室內頂層樓板的表面溫度就可以維持在攝氏32 度以下。不用開電就先幫室內降溫。

-----廣告,請繼續往下閱讀-----

水也是關鍵的一環。一是水的比熱高,想打破水分子之間的氫鍵,需要大量的熱量,要讓一千克水的溫度升高一攝氏度,需要 4,200 焦耳的熱量,這可以避免溫度因為烈陽就快速上升。二是當溫度真的過高,水也會透過蒸發帶走熱量,讓溫度不至於向上飆。

魔法學校的屋頂花園使用水庫淤泥,研磨後燒製成的再生陶粒,裡頭混合了稻穀,結構極細,不會像有機土一樣分解消失,可以涵養水源,還不用動不動補土壤,不只降低屋頂植被的澆水次數,還能達到降溫效果。地面也採用透水鋪面,讓每一滴水都不浪費。

綠色魔法學校本名是成功大學的「孫運璿綠建築研究大樓」

2013 年被英國知名出版社羅德里其評為「世界最綠的建築」,並獲選為聯合國全球七棟零碳建築之一。

除了表彰之外,在認證上也確實取得了臺灣最高等級的「鑽石級綠建築」認證,以及美國最高級的「白金級綠建築」兩個綠建築認證。

-----廣告,請繼續往下閱讀-----

為了讓相同的成效可以陸續在全臺的所有建築上實現,臺灣在既有的綠建築標章體系上,擬定出了「建築能效評估系統 BERS」,針對關鍵的空調、照明、插座電器的用電狀況訂出明確的耗電密度指標得分。簡單來說,就是每平方公尺的面積上,每年平均的用電量。

建築能效標示。圖 / 內政部建築研究所

要打造一棟淨零建築,需要設計與材料硬體的相互配合。在日常用電這最大耗能項目上,能透過前面的淨零設計與智慧能源管理來減低能耗。而我們還沒提到的最後一塊拼圖,則是回到建築的建材本身。這部分減碳的方法有很多種,例如將傳統施作工法改為在工廠就完成模組化建材製造的「預鑄工法」,減少現場搭建鷹架、施工的步驟,達成減碳。又或是將部分建材更換為木、竹等負碳建材,甚至使用零廢棄物、能「循環使用」的建材。例如 2018 年亮相的臺中花博荷蘭館、或是 2021 年台糖在沙崙啟用的循環聚落。

建築物能夠完全不用電嗎?……電從哪裡來?

沒錯,連全球最綠的建築——綠色魔法學校,也無法做到完全不使用電力。正如前面提到的,建築的最大能源消耗來自日常使用,而這所「魔法學校」的成就,是成功將日常能源消耗降低,讓溫室氣體排放減少超過 50%。

這就是關鍵,減少一半後,剩下的部分就靠周邊的造林、太陽能和風能等綠色能源來補足。

-----廣告,請繼續往下閱讀-----

2022 年 3 月,國發會公佈了 2050 淨零排放的路徑圖,參考美國、日本、歐盟等國,制定了 2050 年達成淨零建築的目標。

這條路徑包含兩個核心目標:第一,所有建築物要在建築能效評估系統(BERS)中達到 1 級節能,甚至進一步達到「1+ 級」近零碳建築的標準,減少至少 50% 的能源消耗。第二,同步發展再生能源,讓這些近零碳建築朝淨零邁進。

淨零建築路徑。圖 / 內政部建築研究所。

這個目標比你想像的要容易實現。比如,2023 年 12 月,台達電的瑞光大樓 II 就成功取得了「1+ 級」近零碳建築認證,並符合 0 級淨零建築規範。而在 2024 年 7 月,國泰人壽在臺中烏日的商辦大樓經過改造後,也達到 0 級淨零建築標準。這些案例證明了綠色魔法學校的成功經驗可以複製,不論是新建築還是舊建築,都能達成甚至超越淨零目標。

圖 / 台達電瑞光大樓 II
圖 / 國泰人壽臺中烏日商辦大樓

為了不讓每一年的夏天都是你我餘生最涼的夏天,碳排歸零是必須要實現的目標。現在你知道,這個任務的關鍵就掌握在你我手中。就像選擇能源標章電器一樣,只要選擇符合 BERS 能效標準的建築,我們不僅能降低冷氣的依賴,也能節省電費,讓地球和你的荷包都雙贏。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
3

文字

分享

0
3
3
吃宵夜、晚進食=變胖凶手!想瘦身就早點吃飯吧!
Peggy Sha/沙珮琦
・2022/11/16 ・1569字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

減肥的黃金守則之一就是:不要吃宵夜!但如果嘴饞該怎麼辦?只要沒有超過一天的熱量額度,應該沒關係……吧?

如果你也是這麼想的,那可就大錯特錯了!

最近一項由布萊根婦女醫院(Brigham and Women’s Hospital)團隊發布在《Cell Metabolism》期刊上的研究就發現:吃飯不只要吃得好、吃得巧,抓對 timing 更重要!

接下來,就讓我們有請師爺(誤)研究團隊來為您解釋解釋:什麼叫 timing?

飯!是一定要吃的,不吃不行!但是吃的「Timing」很重要。 圖/IMDb

想減肥只要少吃多動就可以了?情況沒有你想得那麼簡單!

一般說到減肥,大家腦袋中浮現的不外乎「管住嘴、邁開腿」這六個字,不過,其實少吃多動等改變只能產生暫時的效果,因為在飲食之外,還有一系列非常複雜的因素會影響能量平衡、增加肥胖風險,而其中一個重要的因素,便是我們身上的晝夜節律系統 aka 生理時鐘。

-----廣告,請繼續往下閱讀-----

過去已經有不少研究發現,較晚吃飯會增加肥胖風險、增加體脂、降低減肥成功率,不過,背後的原因的到底是啥卻沒人清楚。

於是,布萊根醫院「晝夜節律和睡眠障礙部門」中的成員們決定迎接挑戰,來解開這個神祕的難題。他們找來了 16 位 BMI(身體質量指數)落在過重和肥胖範圍中的患者,在實驗開始前,所有人都要嚴格遵守固定的作息表和用餐內容,而後前往實驗室分別進行兩套飲食方案。

你習慣每天早餐嗎? 圖/Pexels

方案一:愛吃早餐組,每天 9 點乖乖吃早飯,一天三餐、餐餐不落,六點前吃晚餐。

方案二:晚點吃飯組,跟另一組吃同樣的東西,但跳過早餐,改吃午餐、晚餐和宵夜,宵夜會在 9 點~10 點間吃。

-----廣告,請繼續往下閱讀-----

晚吃飯真的母湯!更容易餓還不易消耗

不管早吃飯還是晚吃飯,所有參與者到了 12 點都得乖乖上床睡覺,隔天早上 8 點起床,這樣持續六天,每天都要定期匯報自己飢餓程度和嘴饞程度,然後三不五時讓研究者們量個體溫、確認下能量消耗、抽點血……。

結果發現呢,較晚吃飯會讓人們更容易餓,想吃東西的慾望和想吃的量都會增加,還會想吃澱粉類和肉類食物。

較晚吃飯會增加想吃澱粉類和肉類的慾望。圖/GIPHY

除了這些主觀的回饋外,我們體內的激素也會隨著吃飯的時間而改變:比如說,一種叫做「瘦素」(Leptin)的激素會下降,而當這種激素的濃度下降,我們就比較容易覺得餓。更慘的是,晚吃飯還會降低我們的核心體溫,並讓我們燃燒的卡路里的速度變慢、總數變少,平均每天會少消耗約 5.03% 左右的熱量。

此外,晚吃飯也會影響讓我們體內脂肪組織的代謝,比如說,它會讓 PLD6、DECR1、ASAH1 幾個負責分解脂質的基因表現量下降,反之,負責脂質合成的 GPAM、ACLY、AACS、CERK 等基因表現則會增加。根據過去的相關研究,可以推斷這樣的變化會讓身體減少脂肪分解、增加脂肪生成,也就是說:你的身體會更容易自己囤油啦!

-----廣告,請繼續往下閱讀-----
在對的時間點吃飯!圖/GIPHY

綜合這種種觀察結果,晚吃飯不僅會增加食慾、增加攝取量,還會減少熱量消耗、容易累積脂肪,總而言之,就是讓整體肥胖風險 Up Up 啊!所以說你愛吃宵夜的各位啊,還是快快將手上那罪惡的食物收起來吧!如果真的很想吃,那就早點吃飯吧!

參考資料

  1. https://www.sciencedaily.com/releases/2022/10/221004121928.htm
  2. https://www.cell.com/cell-metabolism/fulltext/S1550-4131(22)00397-7
-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

1

3
1

文字

分享

1
3
1
【2004諾貝爾化學獎】蛋白質的分解機器
諾貝爾化學獎譯文_96
・2022/09/12 ・6710字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2004諾貝爾化學獎】蛋白質的分解機器

  • 譯者/蔡蘊明|台大化學系名譽教授

譯者前言:今年的諾貝爾化學獎又落入了生化學家的口袋,連續兩年頒給生化學者並不常見,我想這應該是反映了現在化學研究的熱門趨勢。今年的諾貝爾化學獎讓我們注意到細胞是如何精妙的去控制它的蛋白質系統,昨日(十月六日)我在中研院生醫所聽了一場 2002 年諾貝爾生理及藥學獎的得主 H. Robert Horvitz 的演講,那是另一個熱門的題目:細胞凋亡,真是一場精采的演講,同樣的我們看到這些蛋白質的另一種運作。前幾日與一位生技系的學生聊到他未來想走的方向,言談之間他似乎認為蛋白質的化學已經熱門了好一陣子了,恐怕熱潮已過。不過從現實來看,在諾大的生命體系中,我們對它的瞭解實在是太少了,由這些蛋白質的研究看來,我覺得蛋白質的化學仍應是方興未艾吧!

後記:  詹健偉是我在 2003 年教過的學生,他原在植微系,後來轉入了生化科技系,從起初對生物系統的興趣加上對化學的熱愛導致他轉入生化科技的領域,然而這些年他逐漸的體認:「只有化學才能完美的解釋生物體系」,現在他已經決定投入“化學生物學”的領域。健偉是個認真的學生,他讀我的翻譯文章極為仔細,更進一步的從一個學生化的背景看出我許多翻譯的謬誤以及不通順之處。約莫半年前碰到他,他主動的提及願意幫我修改,一直到最近才讓我如願。有學生如此,是我的福分,感謝健偉也祝福他!

— 蔡蘊明 謹誌於 2006 年 10 月 9 日

-----廣告,請繼續往下閱讀-----

一個人的細胞中含有上百萬種的不同蛋白質,它們具有無數的重要功能:例如以酵素(或稱為酶)的型式存在的化學反應加速者,以荷爾蒙的型式存在的訊息傳導物質,在免疫的防禦上扮演要角以及負責細胞的型態和結構。今年的諾貝爾化學獎得主:席嘉諾佛(Aaron Ciechanover)、赫西柯(Avram Hershko)以及羅斯(Irwin Rose)研究在細胞中如何對一些不需要的蛋白質加上一種稱為泛素(ubiquitin)的多胜肽標籤,藉以調節某些蛋白質的存在,他們的研究在化學知識上有重要的突破。這些被加上標籤的蛋白質,接著會在一個稱為蛋白解體(proteasome)的細胞"垃圾處理機"中迅速的降解。

透過他們發現的這個蛋白質調節系統,這三位學者使得我們能在分子的層次瞭解細胞如何的控制許多重要的生化程序,例如細胞週期、DNA 的修補、基因的轉錄以及新合成之蛋白質的品質管制。有關這種形式之蛋白質凋亡控制的新知識也使得我們能解釋免疫防禦系統如何的運作,這個系統的缺陷可造成包括癌症在內的不同疾病。

被貼上毀滅標籤的蛋白質

分解是否需要能量?

當大部分的注意力和研究都集中在企圖瞭解細胞如何的控制某些蛋白質的合成時(這方面的研究產生了五個諾貝爾獎),與其相反的蛋白質降解則一直被視為是較不重要的。其實有一些簡單的蛋白質降解酶是早就知道的,一個例子就是胰蛋白酶(trypsin),這是一個存在於小腸中,將食物中的蛋白質分解為胺基酸的一種酵素。類似的,有一種稱為溶體(lysosome)的細胞胞器也早就被研究過,它的功能是把由細胞外吸入的蛋白質降解。這些降解程序的共通性在於這些功能不需要能量。

不過早在 1950 年代的實驗就顯示要分解細胞本身所具有的蛋白質是需要能量的,這個現象一直困擾著研究者,這個矛盾也就是今年的諾貝爾化學獎的背景:亦即細胞內蛋白質的分解需要能量,但是其它蛋白質的分解卻不需要額外的能量。解釋這個需要能量的蛋白質分解過程是由 Goldberg 與其研究夥伴在 1977 年踏出了第一步,他們從一種稱為網狀紅血球(reticulocyte)之未成熟的紅血球,製造出一個不含細胞的萃取物,倚賴ATP(ATP = adenosine triphosphate;是一種細胞的能量貨幣)的能量,這種物質可以催化不正常蛋白質的分解。

運用這個萃取物,今年的三位諾貝爾化學獎得主在 1970 年代後期及 1980 年代初,透過一系列劃時代的生化研究,成功的顯示在細胞中的蛋白質分解,是透過一系列一步步的反應,導致要被摧毀的蛋白質被掛上一個稱為泛素(ubiquitin)的多胜肽標籤。這個過程使得細胞可以非常高的專一性分解不需要的蛋白質,而且就是這一個調控的過程需要能量。與可逆的蛋白質修飾例如磷酸化(1992 年的諾貝爾生理醫學獎)不同之處是:被聚泛素化(polyubiquitination)調控的反應,常是不可逆的,因為被掛上標籤的蛋白質最後被摧毀了。大部分的這些工作是在以色列 Haifa 大學的赫西柯以及席嘉諾佛在休假年,於美國費城的 Fox Chase 癌症中心的羅斯博士的實驗室所完成的。

-----廣告,請繼續往下閱讀-----

泛素的標籤

這個後來被發現用在需要分解掉的蛋白質上所貼的標籤,早在 1975 年就從小牛胸腺中被分離出來,它是一個由 76 個胺基酸所組成的多肽,該分子被認為參與在白血球的成熟過程中,其後由於這個化學分子在各種不同的組織和生物體中(細菌除外)亦被發現,因此被賦予了泛素(ubiquitin)的名稱(ubique在希臘文中有到處或廣泛的意思)(圖一)。

(圖一)泛素:一個共通的多胜肽代表"死亡之吻"

發現由泛素所媒介的蛋白質分解

在赫西柯取得博士學位之後,研究了一陣子肝細胞中倚賴能量的蛋白質分解,不過在 1977 年決定改為研究上述的網狀紅血球萃取物,這個萃取物含有大量的血紅素,嚴重的影響實驗,在企圖利用層析法來去除血紅素時,席嘉諾佛以及赫西柯發現這個萃取物可被分成兩個部分,二者個別都沒有生化活性,但是他們發現一旦二者混合在一起,那個倚賴 ATP 的蛋白質分解活性就恢復了。在 1978 年他們發表了其中一個部分中的具活性物質,是一個對熱穩定的多肽,分子量只有 9000,他們稱之為 APF-1,這個物質後來證實為泛素。

席嘉諾佛,赫西柯,與羅斯在 1980 年發表了兩份決定性的突破工作,在這之前 APF-1 的功能是完全不清楚的。這頭一份報告顯示 APF-1 是以共價鍵(就是一種很穩定的化學鍵結)與萃取物中的各種不同蛋白質結合。在第二部份的報告更進一步的顯示有許多個 APF-1 鍵結在同一個目標蛋白上,此一現象被稱為聚泛素化(polyubiquitination)。我們現在知道這個將目標蛋白質多次泛素化的步驟,是一個導致蛋白質在蛋白解體(proteasome)中降解的啟動信號;也就是這個聚泛素化反應,在蛋白質貼上降解的標籤,或可稱其為"死亡之吻"。

就這麼一擊,這些完全未預期的發現,改變了其後的研究方向:現在就可以集中力量開始鑑定那些將泛素接上蛋白質標靶的酵素系統。由於泛素普遍的存在於各種不同的組織和生物體中,大家很快的體認到,由泛素所媒介的蛋白質分解對細胞一定是很普遍而重要的。研究者更進一步的推測,那個倚賴 ATP 的能量需求,可能是為了讓細胞控制這個程序的專一性。

-----廣告,請繼續往下閱讀-----

這個研究領域就此大開,而在 1981 到 1983 年間,席嘉諾佛,赫西柯,羅斯與他們的博士後研究員及研究生發展了一套“多重步驟泛素標籤化假說”,這個假說是基於三個新發現之酵素的活性,他們稱這三個酵素為 E1、E2與E3(圖二)。我們現在知道一個尋常的哺乳類細胞含有一個或數個不同的 E1 酵素,大約幾十個 E2 酵素,以及幾百個不同的 E3 酵素,就是這個 E3 酵素的專一性,決定了在細胞中要為哪些蛋白質貼上標籤,然後在垃圾處理機中摧毀。

到這個節骨眼為止,所有的研究都是在沒有細胞的系統中進行的,為了也能夠研究泛素所媒介的蛋白質降解之生理功能,赫西柯與其協同工作人員發展了一種免疫化學方法:用數種放射性胺基酸,以瞬間脈衝的方式來培養細胞,可標定細胞內某一個瞬間所合成的蛋白質。但是泛素中剛好沒有這幾種胺基酸,所以在這瞬間合成的泛素並未被放射性標記。利用泛素的抗體,可以將 "泛素-蛋白質"複合體自該細胞中分離出來,而其中的蛋白質的確具有放射性標記。實驗結果顯示,細胞中也確實以泛素系統來分解有缺陷的蛋白。我們現在知道細胞中大約 30% 的新合成蛋白質都會被垃圾處理機分解,因為它們沒有通過細胞的嚴格品質管制。

(圖二)泛素所媒介的蛋白質降解
  1. E1 酵素活化泛素分子,這個步驟需要 ATP 形式的能量。
  2. 泛素分子被轉移到另一個不同的酵素 E2。
  3. E3 酵素可辨認需要摧毀的目標蛋白質,"E2-泛素"複合物和"E3酵素"結合的位置,非常接近目標蛋白質。這個非常接近的距離,使得泛素標籤足以被轉移到目標蛋白上。
  4. E3 酵素釋放出具有泛素標記的蛋白質。
  5. 最後一步重複數次直到一個由泛素分子構成的的短鏈接在目標蛋白質上。
  6. 這個泛素的短鏈在垃圾處理機的開口處被辨識後,泛素標籤脫落而蛋白質被允許進入並被切成碎片。

蛋白解體-細胞的垃圾處理機

什麼是蛋白解體?一個人類細胞含有約 30,000 個蛋白解體,這個桶狀的結構體可以基本上將所有的蛋白質分解為七到九個胺基酸長短的胜肽,蛋白解體的活性表面是位於桶的內璧,也就是與細胞的其它部份是分隔開來的,唯一能進入蛋白解體的桶中活性表面的方式是必須透過"鎖",鎖能夠辨認接有多個泛素構成的短鏈之蛋白質,藉由 ATP 的能量將蛋白質變性(denature),並在泛素構成的短鏈移除後允許蛋白質進入,並將之降解,降解出來的胜肽由蛋白解體的另外一端釋放出來。因此蛋白解體本身並不能挑選蛋白質,決定哪一些蛋白質需要貼上銷毀的標籤,是 E3 酵素的工作。(圖三)

(圖三)細胞的垃圾處理機。黑點代表具有蛋白質分解活性的表面。

最近的研究

當貼上泛素標籤的蛋白質分解過程背後的生化機制在 1983 年被暴露後,它在生理學上的重要性尚未能完全掌握,雖然知道它在銷毀細胞內具有缺陷的蛋白質上是非常重要的,但是再進一步的,就需要一個突變的細胞來研究泛素的系統,藉著仔細的研究一個突變的細胞與正常的細胞在不同的生長條件下有何不同,希望知道細胞中有哪些反應是與泛素的系統有關,這才能得到更清晰的概念。

-----廣告,請繼續往下閱讀-----

一個突變的老鼠細胞在 1980 年由一個東京的研究小組分離出來,他們的突變老鼠細胞含有一個因為突變之故而對溫度非常敏感的蛋白質。在較低溫度時它能發揮應有的功能,但是在高溫時則否,因此在高溫時培養的細胞會停止生長。此外,在高溫時它們顯示其 DNA 的合成會有缺陷以及一些其它的錯誤功能。一群在波士頓的研究人員很快的發現這個突變鼠細胞中對熱敏感的蛋白質是泛素活化酵素 E1,顯然泛素的活化對細胞的運作及複製是不可或缺的,正常蛋白質分解控管不僅對細胞中不正確蛋白質的銷毀很重要,也可能參與了細胞週期、DNA 的複製以及染色體結構的控管。

從 1980 年代末期開始,研究者鑑定出許多生理上很重要的基質是泛素所媒介的蛋白質分解機制中的標靶,在此我們僅提幾個最重要的為例子。

避免植物的自我授粉

大部份的植物是兩性或雌雄同株的,自我授粉將會導致基因多樣性的逐漸喪失,長期而言將造成該物種的完全絕滅,因此為了避免這個情形,植物利用泛素所媒介的蛋白質分解機制來排除"自身"的花粉,雖然完整的機制尚未明朗,但是已知 E3 酵素參與了運作,而且當加入蛋白解體的抑制劑時,排除自身花粉的能力就被削弱。

(圖四)細胞週期中控制染色體分離的機制:剪刀代表分解蛋白質的酵素而綁住剪刀的繩子代表它的抑制劑,APC 將這條繩子貼上標籤造成繩子的分解,剪刀就會釋放出來,接著將那條綁在染色體周圍的繩子切斷,最後造成染色體分離。

細胞週期的控制

當一個細胞要複製自己的時候會有許多的化學反應參與其中,在人體中的 DNA 有六十億個鹼基對必須複製,它們聚集成必須拷貝的 23 對染色體。普通的細胞分裂(也就是有絲分裂),形成生殖細胞(減數分裂),都與今年的諾貝爾化學獎的研究領域有許多交集。在此運作的 E3 酵素稱為"有絲分裂後期促進複合體"(anaphase-promoting complex簡稱 APC),其功能在檢查細胞是否離開了有絲分裂期,這個酵素複合體也被發現在有絲分裂及減數分裂過程中,對染色體的分離扮演了重要的角色。有一個不同的蛋白質複合體,它的功能就好像是一條綁在染色體周圍的繩子,將一對染色體綁在一起(圖四)。在一個特定的訊號出現後,APC 會在一個"降解蛋白質酵素"的抑制劑上貼上標籤,因此這個抑制劑就會被帶到蛋白解體中分解掉,而前述的那個降解蛋白質的酵素就會被釋放出來,在經過活化後將那條綁在染色體周圍的繩子切斷,一但繩子脫落,那一對染色體就會分離。在減數分裂時,錯誤的染色體分裂,是造成孕婦自然流產最常見的原因;一條多出來的人類第 21 號染色體會導致唐氏症;大部份的惡性腫瘤會具有數目改變的染色體,其原因也是由於有絲分裂時錯誤的染色體分裂。

-----廣告,請繼續往下閱讀-----

DNA 的修補,癌症以及細胞凋亡

蛋白質 p53 被封為"基因體的守護神",它也是一個腫瘤抑制基因(tumor-suppressor gene),這個意思是只要細胞能製造 p53 就可以阻擋癌症的發生。可以非常確定的,在所有人類癌症中有至少一半的蛋白質是突變的。在一個正常細胞中,蛋白質 p53 一直不斷的被製造和分解,因此其數量是很低的,而它的分解是透過泛素標籤化過程以及負責與 p53 形成複合體的相關 E3 酵素來調控;當 DNA 受到損傷後,蛋白質 p53 會被磷酸化而無法與 E3 酵素結合,p53 的分解無法進行,因此細胞內的 p53 數量迅速增高。蛋白質 p53 的功能是作為一個轉錄因子(transcription factor),換言之就是一個調控某些基因表現的蛋白質。蛋白質 p53 會與控制 DNA 修補以及細胞凋亡的基因結合,並調控該基因,當它的數量升高時會影響細胞週期藉以保留時間給 DNA 修補的運作,倘若這個 DNA 的損傷過於嚴重,計劃性細胞凋亡將會啟動而導致細胞的"自殺"。

人類乳突病毒的感染與子宮頸癌的發生有極大的關聯性,這個病毒避開了 p53 所控制的關卡,它的方法是透過它的蛋白質去活化並改變某一個 E3 酵素(稱為 E6-AP)的辨識行為,E6-AP 被騙去將蛋白質 p53 貼上死亡的標籤而造成 p53 的消失,這個後果是被感染的細胞無法正常的修補其 DNA 所受到的傷害或者引起計劃性細胞凋亡,DNA 突變的數目增加最後終於導致癌症的發生。

免疫與發炎反應

有某一個轉錄因子調控著細胞中許多與免疫防禦及發炎反應有關的重要基因,這個蛋白質,亦即這個轉錄因子,在細胞質中是與一個抑制蛋白質結合在一起的,在這個結合的狀態下,此一轉錄因子是沒有活性的。當細胞暴露到病毒時或有其它的訊號物質出現時,這個抑制蛋白質就會被磷酸化,接著被貼上銷毀的標籤而送到蛋白解體中分解掉,此時被釋放出來的轉錄因子被運送到細胞核中,在那裡它與某些特定的基因結合,進而啟動這些基因的表現。

免疫防禦系統中,被病毒感染的細胞,會利用泛素-蛋白解體系統,將病毒蛋白質降解到適當大小的多肽,這些多肽會被呈獻到細胞的表面。T 淋巴細胞會辨識這些多肽然後攻擊這些細胞,這是我們的免疫系統對抗病毒感染的一項重要防禦方式。

-----廣告,請繼續往下閱讀-----

纖維囊腫症(cystic fibrosis)

一個稱為纖維囊腫症的遺傳疾病,簡稱 CF,是由一種不具功能的細胞膜氯離子通道(稱為 CFTR;纖維囊腫跨膜通道傳導調節蛋白)所造成。大部份的纖維囊腫病患都具有一個相同的基因損傷,也就是一個在 CFTR 蛋白質上缺少了一個苯丙胺酸的胺基酸。這個突變導致了這個蛋白質的錯誤摺疊結構,使得該錯誤摺疊蛋白被保留在細胞的蛋白質品管系統中,這個品管系統要確實的將此一錯誤摺疊的蛋白質透過泛素-蛋白解體系統銷毀,而不能將之傳送到細胞膜上,一個沒有正常氯離子通道的細胞將無法透過細胞膜傳送氯離子,這就影響到肺部以及一些其它組織的分泌系統,造成肺黏膜液的增加而破壞其功能,更大幅的增加其受到感染的危險性。

這個泛素系統已經成為一個很有趣的研究領域,可用來發展治療各種疾病的藥物,在此的工作方向可以利用泛素所媒介的蛋白質分解機制去避免某些特定蛋白質的分解,也可以設計成讓這個系統將某一個不想要的蛋白質清除。已經有一個在進行臨床實驗的藥,那是一個稱為 Velcade(PS341)的蛋白解體抑制劑,可以用來醫治多重性骨髓瘤(multiple myeloma),這是一種會影響體內製造抗原的細胞的一種癌症。

今年的得獎者從分子的基礎上解釋了一個對高等細胞而言極為重要的蛋白質控制系統,由泛素所媒介的蛋白質分解機制所控制的細胞功能,現在一直不斷的有新的發現,而這方面的研究也在世界各地無數的實驗室中進行著。

參考資料

這份文章是譯自諾貝爾獎委員會公佈給大眾的閱讀資料:

-----廣告,請繼續往下閱讀-----

http://nobelprize.org/chemistry/laureates/2004/public.html

有意進一步的瞭解就得詳讀以下資訊:

http://nobelprize.org/chemistry/laureates/2004/adv.html

原文附有一個很精采的動畫,對這個蛋白質控制系統有畫龍點睛之妙,推薦各位看看:

http://nobelprize.org/chemistry/laureates/2004/animation.html

-----廣告,請繼續往下閱讀-----
所有討論 1
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列