0

0
0

文字

分享

0
0
0

珍珠變Q變硬的秘密: 順丁烯二酸化學澱粉 ──這就是所謂Q彈的代價?(上)

行政院環境保護署毒物及化學物質局_96
・2017/11/28 ・3451字 ・閱讀時間約 7 分鐘 ・SR值 492 ・五年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

從早期的泡沫紅茶,到現今的珍珠奶茶與各式新奇飲品,「手搖飲料」絕對是臺灣庶民文化重要的一環,你總可以在轉角處找到一家飲料店,甚至輸出至世界各地,讓人旅遊或留學時遇見了有種他鄉遇故知的感動。然而近年來,濃縮果汁混摻塑化劑(2011 年)、毒澱粉(2013 年)和茶葉農藥殘留(2015 年)等食安事件,讓手搖飲料蒙上了陰影;其中,佔有靈魂地位的珍珠和波霸被捲入的「順丁烯二酸(酐)化製澱粉」事件,就讓從小愛喝波霸烏龍茶的筆者傷透了心Q。

source:poppet with a camera

不過,不肖業者為何要在食品中違法添加這種物質呢?它會在風味與健康上造成什麼影響?我們將分成上下兩篇文章,為大家介紹順丁烯二酸和順丁烯二酸酐。

-----廣告,請繼續往下閱讀-----

長很像,用途卻大不同的兄弟檔

順丁烯二酸(左)與順丁烯二酸酐(右)。 左圖/ Benjah-bmm27 @ wikimedia, CC0 右圖/ Su-no-G @ wikimedia, CC0

順丁烯二酸又稱馬來酸,是可以解離出兩個質子的有機酸,它的骨架由四個碳原子串接而成,中間兩個碳以雙鍵連接。在工業上有時會被用作甲酯類黏著劑的增黏劑,或和一些藥物結合增加其穩定性。順丁烯二酸的脫水產物 「順丁烯二酸酐」則可以用作聚酯樹脂以及農藥馬拉松(malathion,註)等物質的前驅物。西元 1928 年,德國化學家 Otto Diels 和 Kurt Alder 發現了Diels-Alder反應,當時使用的反應物就是順丁烯二酸酐以及環戊二烯,而後他們也在 1950 年因此獲得諾貝爾化學獎。

Diels 和 Alder在 1928 年發表了雙烯加成反應,而後大家都稱它為 Diels-Alder 反應,當時在期刊上發表的結構是都是由相當簡單的斜線和直線繪成。 圖/by Mazhe2@ wikimedia

珍珠 Q 彈的秘密

手搖飲料中的「珍珠」多半以樹薯粉(tapioca)為主要原料製成,在沸水中滾一陣子,會產生糊化反應(gelatinization),對水分的通透性變高、吸水膨脹,變得柔軟,和米粒煮熟會變軟的原理很像。人體每日所需的熱量主要由碳水化合物(醣類)提供,而這些碳水化合物主要以澱粉的形式被我們吃進去。澱粉是把數百到數千個葡萄糖單體串在一起的長鏈醣類,如果串起來的結構是線性沒有分岔,我們稱它為直鏈澱粉;而有的澱粉會有許多分岔,成為所謂的支鏈澱粉。

這個結構上的差異會造成食物口感上的不同:直鏈澱粉含量高的食品口感偏硬,且經烹煮後仍粒粒分明;支鏈澱粉較多的煮過後則比較軟、黏而有彈性,像是臺灣主流的粳米(蓬萊米、糯米等,支鏈澱粉約佔 80-100%)和東南亞的秈米(泰國香米、印度香米等,支鏈澱粉約佔 69-77%)相比,前者因為支鏈澱粉比例較高,所以吃起來比較軟,煮太久還可能黏在一起。樹薯(cassava)的支鏈澱粉含量和粳米差不多。起鍋後,通常會用冰水或冷水冰鎮,使珍珠表面的澱粉稍微結晶(也就是變硬),塑造出具有彈性嚼勁的口感。

珍珠奶茶中珍珠的 Q 彈口感,來自澱粉的糊化反應。圖/Oqmilteashop@wikimedia BY CC3.0

不過,很多人大概都有過一個經驗:珍珠在飲料裡泡了一陣子,變得軟爛、失去彈性;若放入冰箱保存,又會變硬不好吃。前者正是因為糊化反應,雖然在冰水中發生得比較緩慢,但時間久了還是會明顯感受到口感變軟爛;後者類似冰鎮珍珠的原理,澱粉在低溫下會慢慢「結晶」,把分子間部份的水分擠出去而變得紮實,在口感上就會變得較硬而脆。

-----廣告,請繼續往下閱讀-----

為了解決這個問題……

修飾澱粉登場了!

人們會根據不同的目的,對澱粉做出不同的化學處理,例如加酸或澱粉酶製造糊精,或是修飾上醋酸根加速產品的吸水速度,而這樣調整過的原料,我們稱之為修飾澱粉。以「珍珠糊掉事件」為例,原本製作珍珠時應用的結晶和糊化反應裡,主角只有澱粉和水,它們的結合和分離只靠氫鍵,很容易受溫度影響;但是商人們找到另一種物質 ── 順丁烯二酸(或稱馬來酸,maleic acid),它的結構上有兩個羧基(-COOH),可以和澱粉上面的羥基(-OH)進行交聯聚合反應,形成較不易因為溫度變化而接上或斷裂的共價鍵。鍵結能讓澱粉分子們保持在一定的距離內,不能順利結晶變硬,卻也不會因為泡水太久而糊掉。

讓我們再次回到分子式,順丁烯二酸有兩個羧基,經過脫水縮合之後就變成了順丁烯二酸酐。在和澱粉進行交聯聚合反應時,水中存在的以順丁烯二酸佔絕大多數,但廠商進料的時候大多是進順丁烯二酸酐,這是因為順丁烯二酸酐的應用遠比順丁烯二酸多,所以產量比較大,而且加到水裡之後也能自動水解成能進行反應的順丁烯二酸。

珍珠Q彈的秘密。 製作/ 鴨鴨  水分子圖/ Lopossumi~commonswiki @ wikimedia,CC0 笑臉圖/ Unknown @ GoodFreePhotos,CC0 澱粉結構圖/ NEUROtiker @ wikimedia,CC0 順丁烯二酸結構圖/ Benjah-bmm27 @ wikimedia,CC0 螃蟹圖/ python @ Pixabay,CC0

到現在為止可能還有點複雜,讓我們用上面這張圖來複習一下吧!

-----廣告,請繼續往下閱讀-----

(1)這是一顆還沒煮熟的粉圓。(2)放大來看,其實上面有很多澱粉分子,(3)再拉進一點會發現它是一個個葡萄糖用共價鍵串起來的,各個支鏈之間會有一定程度的(4)氫鍵和凡得瓦力(這裡不顯示),其中氫鍵受溫度影響很大,熱的時候比較不穩定,冷的時候吸引力比較強。

(5)在沸水中滾一陣子後,支鏈間的氫鍵變弱,原本結構較為緊密的澱粉分子鬆開,讓外界的水分子有機可乘鑽到中間的空洞,是為糊化反應,(6)然後它會膨脹。冷卻的時候因為水分子也可以和澱粉上的羥基形成氫鍵,所以就卡在裡面了。煮透之後冰鎮一下下,表面的分子間及分子內氫鍵變強,珍珠變得較有彈性。

(7)如果泡在飲料裡太久,水分子還是有機會塞進澱粉支鏈間的空洞,讓珍珠變得ㄋㄨㄚˇㄋㄨㄚˊ。(8)如果冰進冰箱,澱粉分子會慢慢擠出水分變回原本較緊密的結構,變得稍微硬而脆。(9)如果加入順丁烯二酸,它有兩個反應位,像螃蟹一樣。(10)會和澱粉分子產生交聯聚合反應再澱粉支鏈間架橋撐住,讓它不會太鬆散或者太緊密,這樣一來,珍珠就能青春永駐了

更棒的是,這項改良除了對珍珠愛好者與製造者們來說是天大的好消息,還能夠推廣至所有有「Q 彈需求」的製品,包括肉圓、粄條等等。超厲害的功能加上諾貝爾獎加持,順丁烯二酸和它的脫水好夥伴簡直好棒棒。感謝吧!讚美吧!讓我們歡欣鼓舞的慶祝吧!但是,想是這麼想,我們還是得稍微踩個煞車,環顧一下所有現實面的問題……

什麼問題呢?讓我們在下篇繼續說吧! –> 毒澱粉,這就是所謂Q彈的代價?(下)

編按:順丁烯二酸現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

註:連結中使用的馬拉松前驅物是順丁烯二酸二乙酯,其可由丁烯二酸酐製備,故在此我仍稱順丁烯二酸酐是馬拉松的前驅物。

 

參考資料:

-----廣告,請繼續往下閱讀-----
  1. Major Differences-Difference between Japonica and Indica rice
  2. Food-info.net-Starch
  3. 維基百科-Modified starch
  4. 科學月刊-認識順丁烯二酸
  5. 上下游-從工廠到餐桌:順丁烯二酸的上下游之旅
  6. Diels, O.; Alder, K. (1928). “Synthesen in der hydroaromatischen Reihe, I”. Justus Liebigs Annalen der Chemie. 460: 98–122.

 

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
為什麼會有咬人的沙發?富馬酸二甲酯是抗黴良品還是毒藥?
行政院環境保護署毒物及化學物質局_96
・2017/12/20 ・2118字 ・閱讀時間約 4 分鐘 ・SR值 543 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

試著想像一個情境:這天風光明媚,你終於從賣場把心中嚮往好久的那張沙發帶回家。移入客廳之後,你調整擺設角度、並放上可愛的花布抱枕,準備窩到新沙發上享受一整個下午悠閒時光…… 咦,奇怪?怎麼坐了幾個小時之後,身上有接觸到沙發表面的皮膚都開始紅腫發癢、出現像是發炎的症狀呢?

以上狀況曾真實發生在 2006 至 2008 年間的芬蘭、英國與法國,當時大規模的「接觸新購入沙發造成皮膚發炎事件」引起許多人關注。經追查發現,這些發生「沙發皮膚炎(sofa dermatitis)」的患者,主要從三家英國公司與一家法國公司購入沙發,再往源頭回溯,問題的根源竟是他們在中國的供應商。此供應商在製造家具時,使用了「富馬酸二甲酯(dimethyl fumarate)」抑制黴菌生長,然而這種化學物質容易誘發過敏,在歐盟地區更是被禁用的。

-----廣告,請繼續往下閱讀-----

該次沙發皮膚炎事件不但在媒體上被廣泛討論以外,也促使歐盟更新了原先的規定,除了在「境內」禁用富馬酸二甲酯以外,從境外輸入的民生物品每公斤殘留量也不得超過 0.1 毫克

2006至2008年間,歐洲發生大規模的「沙發皮膚炎」事件,經追查發現是由於部分沙發廠商引進添加了歐洲地區禁用的富馬酸二甲酯的沙發。(圖非當事沙發) 圖/ terimakasih0 @ Pixabay BY CC0

形相近,性相遠

究竟當年的事件主角 ── 富馬酸二甲酯是何方神聖?這個物質聽起來十分陌生(名字又意外地華麗),首先,讓我們試著從它的結構談起。

各物質結構式。製圖/ 鴨鴨 富馬酸二甲酯圖/ Edgar181 @ wikimedia, CC0 順丁烯二酸及反丁烯二酸結構式。圖/ Benjah-bmm27 @ wikimedia, CC0

-----廣告,請繼續往下閱讀-----

富馬酸二甲酯,又名反丁烯二酸二甲酯,不由得讓人想到我們之前介紹過的、曾被用來使珍珠維持Q彈口感的「順丁烯二酸。沒錯,富馬酸二甲酯的核心部分跟順丁烯二酸是化學上所謂的「順反異構物」;接在順丁烯二酸中心雙鍵兩端的大基團接在雙鍵的同一側,而富馬酸二甲酯上的兩個大基團則接在雙鍵兩端的對側。順丁烯二酸的俗名叫做馬來酸(maleic acid),而反丁烯二酸的俗名是富馬酸(fumaric acid)。值得注意的是,雖然只是雙鍵兩端連接的方式倒過來,化學性質卻有很大的不同,用途和毒性也不一樣。

順丁烯二酸可以讓珍珠變得有彈性,可是傷腎;反丁烯二酸是人體細胞進行呼吸作用時,克氏循環中的一個中間產物,毒性不高,在應用上,它則是法規核准使用的調味劑,也可當作金屬類營養添加劑搭配的陰離子。若從結構上觀察,富馬酸二甲酯是富馬酸上的兩個「羥基(-OH)」經酯化變成「甲氧基(-OCH3)」,可以做為除黴劑,具肝毒性,且會傷害免疫系統以及消化系統。

帶有毒性,卻可以入藥的富馬酸二甲酯

人體接觸富馬酸二甲酯的途徑有兩種,除了文章剛開始提到的皮膚接觸,還有經攝食進入體內,接觸可能像案例裡家具中殘留而造成過敏性的濕疹,攝入則可能抑制免疫系統以及傷害消化道。而富馬酸二甲酯抑制免疫系統的特性,在醫學上也會被用於一些自體免疫疾病,如多發性硬化症的治療

「等等,這一批符合標準嗎?」富馬酸二甲酯除了輸入臺灣前的書面審查,還會有邊境查驗喔!(邊境查驗示意圖)。 圖/ U.S. Department of Agriculture @ Flickr BY CC0

-----廣告,請繼續往下閱讀-----

暴露疑慮怎麼辦?先從源頭把關做起

雖然今日臺灣和歐洲皆有立法禁止將富馬酸二甲酯添加至食品中,但在其他地方尚少被列入黑名單,它也仍然因為優異的防黴性質在某些國家被廣泛使用,如家具、食品、飼料和皮革等較易發霉的產品。

為了避免大家接觸富馬酸二甲酯的風險,政府的配套措施除了在商品輸入至國內前的書面審查,進口後還會有邊境查驗,包括現場查核以及抽樣檢驗,把一些食品送到實驗室進行檢驗分析,所以基本上都不會有太大的疑慮喔!

 

新聞來源

參考資料

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)
行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

-----廣告,請繼續往下閱讀-----

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

-----廣告,請繼續往下閱讀-----

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

-----廣告,請繼續往下閱讀-----

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/