Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

不戴套的新選擇?分子保險套,直接讓精子「軟腳」的未來男性避孕藥

活躍星系核_96
・2017/09/09 ・3966字 ・閱讀時間約 8 分鐘 ・SR值 583 ・九年級

作者 /  AhThree,還在用科普魂培養硬實力的菸酒生,希望未來能擁有信手捻來科普文的神秘力量。來自生科系,現為STS碩士生。

分子保險套是一種針對精子的避孕方式,利用化學分子阻止精子的獲能作用,達成避孕的效果,並非實際的保險套。人體產生一個胚胎,並非只有受精這個步驟,因此在詳細說明分子保險套的細節之前,讓我們先談談受精作用。

受精才不像受驚一樣簡單快速!

受精作用(fertilization),說簡單可簡單,說複雜卻也是十分複雜。一般人直覺地認為受精就是精卵結合的瞬間,但 促成這美妙瞬間的背後,需要精子和卵子一連串的預備工作,最終才能完成。

受精作用說簡單可簡單,說複雜卻也是十分複雜。source:seeingimonkey

以生物學的角度解析受精的過程,先從成熟且健康的精卵做為起點。男女經過性行為後,精子進入女性生殖道開始義無反顧向前衝。但各位,精子是人體中最小的的細胞啊!!!成熟的精子長度約為 5 微米(μm),姑且不提從陰道到輸卵管的距離,精子在女性生殖道這漫漫長路前進的過程中,還有其他各式各樣的關卡等著精子突破,例如子宮頸處的活性氧化物[1](Reactive oxygen species)會淘汰功能異常和不成熟的精子[1]。總之,精子需要耗費極大的能量才能游到輸卵管,堪稱篳路藍縷、以啟山林。但只要到了輸卵管,一切就都很好辦了嗎?

No~~~~當然不是,成熟的精子,即便到了卵佛爺的面前,沒有萬全的準備,依然無法突破卵佛爺的重重心防阿!女性的卵細胞,除了細胞膜外,還有一層透明帶(zona pellucida)和最外層的放射冠(corona radiata)包覆。透明帶是一層醣蛋白,是精子進入卵的最後一道防線,也藉由免疫避孕(immunocontraception)阻止異種精子進入卵細胞,達成保護作用。放射冠也是一層保護性的醣蛋白,負責提供卵子所需的蛋白質。

貼心小提醒,卵子是人類最大的細胞,一個卵細胞大小約為精細胞的 10,000 倍,忽略形狀不規則的放射冠不提,人類透明帶的平均厚度是 16 微米[2],約為精子頭部的三倍長,精子到底怎麼穿過卵子啊!所以,要讓卵成功受精,背後還有你不知道的秘辛。

事實上,男性產生的成熟精子不具使卵子受精的能力,精子需要經過獲能作用(capacitation)和頂體效應(acrosomal reaction),才能完成與卵佛爺結合的終極任務啦!

精子娃娃。source:vaincomforts

獲能作用(capacitation),即字面上之意,為精子獲得特殊能力的生化反應,但這一切要從女性排卵開始說起。卵巢排卵後,女性體內的黃體素濃度上升,包圍卵子的卵丘細胞(cumulus cell)除了提供卵子養分外,也會分泌黃體素(progesterone)。因此,隨著精子與卵子的距離愈近,輸卵管中的黃體素濃度隨之增加,進而活化精子細胞膜上的 CatSper[2]使精子獲能。在未暴露在黃體素的環境時,CatSper 被膜上另一種分子堵塞。當精細胞周圍出現黃體素,此賀爾蒙會間接使 CatSper 被活化而開啟,導致鈣離子大量流入精細胞。精細胞內鈣離子濃度的上升將使其進入過度活躍(hyperactivation)狀態,此時精子就像喝了蠻牛一樣精力大增,這也是接下來精子即將穿過厚厚透明帶的重要關鍵。此外,獲能作用也讓精子能夠進行頂體效應並能辨識卵子,由此可見獲能作用的重要性。

受精作用到了這個階段,就萬事俱備,只欠東風啦!希望看到這裡的讀者們還沒因為複雜的受精而受驚(汗)。接下來要介紹形成受精卵前的最後一個步驟──「頂體效應」(acrosomal reaction),在了解機制之前得先一窺精子本人的長相。

精子構造圖。圖/By LadyofHats, Public Domain, Wikipedia Commons

精子的基本構造分為頭部(head)、中節(mid)以及鞭毛(tail)。頭部的尖端為頂體(acrosome),為高基氏體(Golgi apparatus)特化而成,和精細胞膜相連。頂體內充滿了頂體酶(acrosin),精卵結合時就是靠它分解卵子的透明帶,精子才能使卵受精。所謂頂體效應,就是頂體膜和精細胞膜融合,並釋放頂體酶的過程。因此,無法進行頂體效應的精子,就算撞破頭也無法穿過卵。現在一切都真相大白了!結合以上,受精其實是很複雜的一個過程,因此各式各樣的避孕方法也應運而生。

今晚該用哪一招?避孕招數百百招

使用保險套也是常見的避孕措施之一。source:Hey Paul Studios

避孕方法種類繁多,本篇無法一一詳述原理,那就依照不同需求大略做個簡單的介紹吧!先給各位讀者一點概念,根據美國國家衛生院(NIH),避孕方法分為五大類[3]:

  1. 長效可逆避孕法(long-acting reversible contraception, LACT)
  2. 賀爾蒙避孕法(hormonal method)
  3. 屏障避孕法(barrier method)
  4. 緊急避孕(emergency contraception)
  5. 絕育(sterilization)

其實大致上就是依照作用時間和原理去區分,各種避孕方式也是依此歸類。這時候重點來了,什麼狀況下要採用什麼避孕方法呢?

狀況一:情人節和愛人激情之下才發現上次保險套用完了,該怎麼辦?

相信大家都知道事後避孕丸(emergency contracepive pills, ECPs)這種賀爾蒙藥物,除此之外可以考慮銅型避孕器[3](Copper T intrauterine device),能阻擋精子前進,且即便卵子受精,此裝置作為物理性的阻隔,能避免受精卵著床。

圖/ By frolicsomepl @ Pixabay

狀況二:好討厭戴套的感覺,想無憂無慮的享受性愛,但又擔心用賀爾蒙會影響未來受孕,該怎麼辦?

首先,可以考慮最天然無害的安全期避孕法,不過女性必須有正常的月經週期,計算排卵時間才能精準。另外,真的不希望用賀爾蒙的話,銅型避孕器也是很好的選擇。不過重點來了,其實現在有採取賀爾蒙的避孕方法中蠻多都是可逆的,例如賀爾蒙型子宮內避孕器、桿狀植入物(implant)、避孕貼片(patch)等,也就是說就算用賀爾蒙達到避孕的目的,只要停止使用後都可以恢復受孕能力。

分子保險套,未來的男性避孕藥

研究人員發現雷公藤(Tripterygium wilfordii)中的 pristimerin 和芒果及蒲公英根部中的 lupeol,可阻斷受精過程、讓精子「軟腳」,為發展避孕藥物的潛力股。這兩種植物的天然類三萜化合物[4]能避免精子的獲能作用,進而使精細胞無法進入過度活躍(hyperactivation)狀態[5]。

研究人員利用四位男性健康捐贈者自己動手(masturbation)取得的新鮮精液純化出精細胞,再以膜片箝制(Patch clamp)技術測定精細胞的跨膜電流。CatSper 為離子通道,有離子通過時會產生跨膜電流,藉由測定跨膜電流可觀察 CatSper 的開關。實驗採用黃體素(正常生理濃度)和兩種在植物特有的類三萜化合物 pristimerin 和lupeol,觀察 CatSper 被活化的情形,並利用電腦輔助精液分析儀(Computer Assisted Semen Analysis,CASA)測定 VCL[6]和觀察精子活動力(motility)作為判斷的指標。

實驗結果顯示,不論是黃體素、pristimerin 或是 lupeol,皆不會影響未獲能的精細胞,也就是未獲能精細胞的VCL 值沒有改變。獲能後的精子單獨暴露在 pristimerin 或 lupeol 的環境下也不受影響,但任一類三萜化合物和黃體素一起施用,卻能降低 VCL 值。相較於單獨使用黃體素的 VCL 值,黃體素+ pristimerin 和黃體素+ lupeol 的 VCL 值分別降低了39% 和48%,可粗略解釋為此兩種類三萜化合物在有黃體素的環境下降低了精子的前進速度。

精子活動力的分析中也發現類似的結果,研究人員分析精液樣本中有活動力的精子數量,發現不論精子獲能與否,皆不受單一化合物的作用影響,但在任一種類三萜化合物和黃體素一起使用的狀況下,獲能且具活動力的精子數降低19%,而未獲能且具活動力的精子數量則沒有太大改變。

從以上結果可知,此二種類三萜化合物能干擾黃體素所引導的精子獲能作用,並能小幅降低獲能的精細胞活動力。更值得一提的是,類三萜化合物並不影響未獲能的精子活動力,顯示其不會損害一般的精細胞。

人類精子。圖/ By Hlj55567516 @ wikimedia commons

分子保險套的優勢與未來研究方向

實驗結果揭示了 pristimerin 和 lupeol 發展為避孕藥物的潛力[5]。首先,類三萜化合物對精細胞無損害,僅透過改變關鍵時刻精子的活動力達到避孕效果,讓精子即使碰到卵子也束手無策。因此,類三萜化合物可作為天然物質的分子保險套,也可發展為緊急避孕措施。另外,此二種類三萜化合物的有效作用劑量極低,且不像傳統賀爾蒙類藥物會產生副作用,大幅降地使用賀爾蒙類藥物的健康風險,可發展為長期避孕措施,或應用於避孕貼片及避孕環上。

不過先別高興得太早,這兩種物質阻斷受精的特性才剛被發現,而且實驗中精子和類三萜化合物直接反應,並未進行任何的活體試驗。藥物分子經過活體新陳代謝,最終是否能到目標部位並發揮藥效,以及最適合的劑量等都還有待研究。目前為止,所有發展潛力的分析和評估都只是紙上談兵,要成為真正上市的避孕藥物,還有一段很長的路要走。下一步,研究人員準備以跟人類精子活動類似的靈長類動物作為實驗對象,來觀察這兩種物質在體內的效果。此外,這兩種類三萜化合物的萃取十分昂貴,尋找更易取得的植物來源也是未來研究進行的方向。

參考文獻:

註解:

  1. 主要由白血球分泌,但精子本身也會分泌。
  2. CatSper(Cation channel of sperm proteins),為精子獨有的電壓敏感鈣離子通道,主要位於精子尾部。
  3. 子宮內避孕器(Intra-uterine device, IUD)的一種,又稱節育環、子宮環,為植入子宮的T字型微小裝置。子宮內避孕器分為賀爾蒙型避孕器和銅型避孕器。
  4. 類三萜化合物(triterpenoid),指由三個「萜類化合物」組成的化合物,例如龍涎香醇等。
  5. 所謂的過度活躍,指精細胞內鈣離子濃度上升,使精子的鞭毛進行不對稱擺動而產生一股強勁的推力,是精子穿越卵子透明帶的關鍵。若無法達到過度活躍狀態,即使精子接觸到卵也無法進行頂體效應,故抑制獲能作用可避免卵子受精。
  6. VCL(curvilinear velocity)為精子沿著路徑方向前進的曲線速度,通常獲能後的精子傾向比未獲能的精子有較高的 VCL 值。

文章難易度

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
COVID-19 會造成嬰兒潮嗎?很可能不會
寒波_96
・2020/08/17 ・1737字 ・閱讀時間約 3 分鐘 ・SR值 557 ・八年級

高度傳染性的 COVID-19(武漢肺炎、新冠肺炎)席捲全球,為了防疫,全世界許多人被迫減少外出,增加待在家裡的時間。有種說法是,大家關在家裡沒事做,生小孩的機率會上升,真的嗎?

瘟疫與出生率的關係複雜,不過由經驗推論,事態的發展方向很可能恰恰相反。

圖/pikrepo

過往經驗:西班牙流感等浩劫以後……

歷史記錄指出,在戰爭、饑荒、瘟疫之類的災難增加死亡率以後,生育率短期內會下降,一段時間後才會恢復。以影響遍及全球的「西班牙流感」來看(照現在的流行,可稱之為「1918 年新型流感」),它短期內導致不少人死亡,也改變人口組成,減少生殖力,幾年後才恢復。

如美國在 1918 到 1919 年的出生率降低了 13%。然而,西班牙流感在第一次世界大戰末爆發,隨後大戰結束。1920 年以後出生率的增加,也可能與大戰結束有關,不單純是傳染病的影響。

西班牙大流感後的嬰兒潮可能也和第一次世界大戰有關,而不單是傳染病的影響。圖/wikimedia

有些研究發現,嚴重地震、颶風過後的 1 到 5 年生育會增加。經歷出乎意料的死亡以後,父母有意願把去世的人生回來,而死亡後的新生命也有某些象徵意義。

不過不同傳染病的性質不同。西班牙流感主要傷殺對象是處於繁殖年齡的年輕人,不難預期會影響生育。但是武漢肺炎主要攻擊老人,多半對年輕人的健康影響有限,未成年人的死亡數更是很少。如此狀況下,父母和寶寶都少有損失,父母不需要把小孩「生回來」,因此這部分對生育率的影響應該有限。

在21世紀初影響生育率的關鍵是?

時代背景、社會狀況、經濟,是影響生育的關鍵因素。

瘟疫過後生育率的增減要和原本的狀況比較,然而如今的「現狀」和從前差異很大。目前經濟比較發達,帳面教育程度高的國家或地區,生育率本來就已經不高,平均 1 位女生生 2.1 個小孩,還有地區低於 1.3 個小孩。

圖/pikrepo

經濟相對發達的地區更加重視生活品質。大家都被關在家裡,使得媽媽(與爸爸)在家的負擔明顯加重,顧小孩就很耗精力,或許會影響生殖的意願。

社經較有優勢的家庭,生寶寶會考慮比較多事。瘟疫重創經濟後,未來的不確定性上升,會令人減少長期計劃,肯定也會減低生小孩的意願。不久前 2008 年的經濟蕭條,就曾經導致生育率降低。

中低收入的國家或地區,處境不同。這些地方傳統上有兩大因素促進生寶寶:第一,生出來的小孩能作為不用付錢的勞動力;第二,小孩長大後可以成為父母年老後的依靠。

然而隨著時代變遷,最近這些地方的生育率多半也有下降,不過經濟假如恢復,生育率也有機會回升。但是時代力量畢竟和以前不同,大時代整體趨勢是,大量人口由鄉村移動到城市,使得家庭觀念轉變,以及避孕增加,都會減少生育。

影響生育的各種可能因素。圖/取自參考資料

綜合推測,瘟疫以後的嬰兒潮極不可能發生,至少在高收入國家,短期內的生育率只會萎靡。而中低收入國家的出生率,近幾十年來持續下跌的趨勢,也不太可能在疫情結束後從根本上逆轉。

撒哈拉以南的非洲國家比較難預期。它們生育率的整體趨勢也是下降,不過經濟與人口結構相比之下轉變較小。這些地區的經濟仰賴出口導向,更容易受到國際合作或保護主義的政策影響。它們也將影響未來幾年,全世界的人口組成。

本文轉載自新公民議會〈武漢肺炎會造成嬰兒潮嗎?很可能不會〉

延伸閱讀

參考資料

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1093 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
可樂真的能殺精?尿尿時間都是21秒?那些年,臺灣曾得過的「搞笑諾貝爾獎」(下)
PanSci_96
・2019/09/11 ・1890字 ・閱讀時間約 3 分鐘 ・SR值 519 ・六年級

作者/周玟萱 執行編輯/郭宜蓁

2008 年「搞笑諾貝爾化學獎」

曾經有一段時間,民間流行「可樂殺精」這種說法,有人認為這是源自於美國 60 年代的性解放運動,當時避孕措施選擇不多,因此完事後的青年就突發奇想,便出現了此妙方;也有一說認為這原本是中南美洲婦女的流行。無論起源是什麼,可樂真的能有這種奇效嗎?

有人認為「可樂殺精」這種說法源自於美國 60 年代的性解放運動,因為當時避孕措施選擇不多,因此完事後的青年就突發奇想,便出現了此妙方。繪圖/周玟萱

1985 年,美國的婦產科醫生 Umpierre、Hill 和 Anderson 因為實在是太好奇了,他們便在裝有可樂的試管中,滴入冷凍精子,經過觀察之後發現,精子的數量真的變少了!然而當時並沒有哪位研究人員直接下過「可樂可以殺精避孕」這種結論,只是事情不知道為什麼還是傳開來了。

2008 年搞笑諾貝爾獎有 4 位台灣人榮獲化學獎。得獎者分別是萬芳醫院院長洪傳岳、吳珮芬、謝茶唱與姜必寧,他們便是在讀了 1987 年這篇可樂殺精的研究以後,紛紛眉頭一皺,覺得事情並不單純。

於是他們將混有精子的可樂滴在一層薄膜上,想看看精子是否可以順利穿過薄膜來到底下的食鹽水。兩小時後發現,有將近七到九成的精子都做到了,這也顯示大部份的精子不會被可樂殺死。況且可樂含有糖份,直接拿來沖洗生殖器官會造成細菌感染,聽起來絕對不是一個避孕的好方法。

當然,可樂殺精的神話,也衍伸出不少版本。另一種常見的說法是,男性直接透過喝可樂,減少精蟲活力達到避孕效果。

咦?真的有這麼方便的設定嗎?假的!因為可樂這類的碳酸飲料,除了糖以外,其餘的成份也許在誤打誤撞的情況下,真的會影響少部份的精子……不過對比幾千萬隻精子,這數量根本就只是冰山一角而已!況且碳酸飲料影響精子的最佳條件是,從精子離開體內之後,立刻將大量的碳酸飲料與精子接觸,完全不給精子游到子宮裡面的時間。

碳酸飲料影響精子的最佳條件是,從精子離開體內之後,立刻將大量的碳酸飲料與精子接觸,完全不給精子游到子宮裡面的時間。繪圖/周玟萱

所以如果只是用「喝」的,等到飲料通過腸道消化完畢,影響力更是微乎其微啊,假如還有誰真的想完全靠喝可樂來避孕,那也許就要跟喝白開水一樣,能喝就喝能灌就灌……欸,可是喝到這種程度,在解鎖避孕成就之前,你應該會先成功的胖起來,還是說這也算是另類的避孕方法?XD

你或許會想說,這都什麼年代了,怎麼還會有人傻到真的用可樂來避孕?是哪個沒知識又不多看泛科學的人啊?

然而,就這樣把問題全怪罪到誤信偏方的人身上,並無法讓這種「偽」知識消退。大家不妨想看看,為什麼現代社會無論成年與否,還有這麼多人一碰到跟「性」 有關的疑問,寧可躲起來滑西斯版或把各大成人影片網站的內容當作可靠的資訊來源,看完就以為自己獲得了正確的性知識了呢?

當孩子問了跟性有關的疑問,可能聽到的回答就是大人叫他們去讀書,不要問。繪圖/周玟萱

我們常感受到的是環境對「性」的避諱,讓很多人就算好奇也不敢問。再加上不知道要怎麼教小孩正確的觀念,導致他們到了青春期,依然對安全性行為以及避孕措施的重要性一無所知,自然而然也不知道有哪些風險,與如何避開風險。

回過頭看,問題的核心可能在於,我們的社會什麼時候才能成為一個讓人可以安心討論性知識的環境呢?

2015 年「搞笑諾貝爾物理獎」

2015 年的搞笑諾貝爾物理獎,由美國喬治亞理工學院楊佩良、流體力學專家胡立德獲獎,這是一個關於尿尿的研究。研究顯示,幾乎所有體重在3公斤以上的哺乳類動物,不論大小,牠們的排尿時間都落在 21±13 秒之內。

研究過程中,他們除了拍攝大量動物排尿的影片,進行觀察與作為數據來源,他們還回推公式,用簡單的物理模型:考慮重力、膀胱的大小、壓力、尿道長度,證明只要排尿系統的尺寸比例不變,體重超過3 kg的哺乳類動物,排空液體的時間都差不多。其中,重力是最關鍵的因素。而這份研究結果也被發表在美國國家科學院院刊。

看完這些得獎成就,你可能會覺得,知道哺乳類尿尿時間要做什麼?既不能加薪、也不能變得更漂亮(?)不過從以上這些研究結果來看,雖然像是一本正經的搞笑,對我們的生活或許也不會有什麼直接的影響,但是這些研究背後的反思性倒是讓我們可以去思考這個世界的其他樣貌。

PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。