0

0
0

文字

分享

0
0
0

鯊魚退散!海軍漫長的防鯊之役──《不為人知的敵人》

八旗文化_96
・2017/05/19 ・6674字 ・閱讀時間約 13 分鐘 ・SR值 505 ・六年級

  • 【科科愛看書之本月選書】軍隊最大的對手是誰?才不是那些顯而易見的持槍敵人,而是疲勞、噪音、酷熱、腹瀉、恐慌……等等你根本料想不到的邪惡角色。快跟著瑪莉羅曲那明快而幽默的腳步,一起深入軍營去見識那些《不為人知的敵人》,看看科學是如何用有趣的方法力抗各式另類殺手。本書為泛科學 2017 年 5 月選書

問:如果你手下的士兵都害怕鯊魚該怎麼辦?

其實,如果真要鼓舞士氣的話,反而應該讓官兵瞭解那些事實和統計數字。麥金泰寫說:「對於緩和官兵的恐懼來說,正確的資料反而比任何驅鯊劑要來得周全而且有效。」1944 年開始, 海軍就在按照這種想法在做。他們的航空訓練部(Aviation Training Division)發行了一本叫做《鯊魚常識》(Shark Sense)的小冊給新進的飛行員。這本小冊共有 22 頁,附有漫畫,畫的是鯊魚在奔竄、逃跑、滿頭大汗、哀求的畫面,整本都是讓人讀了會放心的事實。

滾開!我不怕你。圖/GIPHY

後來證實其中所言不虛。統計二戰中 2500 名機員的海上求生報告,結果總共有 38 次目擊鯊魚,其中 12 次人員受傷或死亡。

不過,《鯊魚常識》雖然令官兵安心,卻沒有解答官兵要是在海上遇難心裡會有的急切問題。海水裡只要有一滴人血,鯊魚是不是真的就會聞到?聲音是會招惹鯊魚,還是嚇走鯊魚?移動的話會不會怎麼樣?包括厄瓜多的游泳客在內,某些人的報告說,拍打鯊魚會把牠們嚇走;有的卻說那會引起牠們的興趣。實際上到底如何?沒有人知道。

1958 年,海軍研究辦公室生物學部主任席尼.蓋勒(Sidney R. Galler)決定一探究竟。他提供經費成立「鯊魚研究群」(the Shark Research Panel),並協助設立「鯊魚攻擊檔案」(Shark Attack File)。這座全球事件資料庫延續至今,已經成為「國際鯊魚攻擊檔案」(International Shark Attack File)。大衛.博爾德里奇統計分析 9 年的鯊魚攻擊檔案,給了全世界「大部分我們現今所知的鯊魚攻擊知識」。(引自 2013 年美國海洋漁業服務署〔National Marine Fisheries Service〕的一篇論文。)除了這大部分之外,其餘則是來自 1950 年代海軍研究辦公室的資助成果;關於鯊魚掠食、嗅覺和取食行為等等。《海洋漁業評論》(Marine Fisheries Review)曾刊登過一篇紀敘鯊魚研究史的文章。博爾德里奇告訴文章的作者說,「你若想對鯊魚研究有什麼好點子,你就要去找席尼。」

-----廣告,請繼續往下閱讀-----

比起尿液和汗液,鯊魚更愛你驚恐的味道

亞伯特.泰斯特(Albert L. Tester)真的去找席尼了。他當時有個好點子,實驗室外面的海上有 3 種鯊魚,還有一組兩個長 50 英呎的海水槽可做實驗。泰斯特在馬紹爾群島(Marshall Islands)的艾尼維托克海洋生物實驗室(Eniwetok Marine Biological Laboratory)工作。(艾尼托維克和比基尼島〔Bikini〕1 一樣,都是環礁〔atolls〕。美國曾在比基尼島試爆原子彈。海洋生物實驗室在試爆之後負責提供放射性落塵對海洋生物,以及當地工作人員的影響──要是有人追蹤後續幾十年的訃聞的話)

泰斯特開始尋找是什麼把鯊魚吸引到獵物身上?鯊魚是靠視覺還是嗅覺進行獵捕?如果是嗅覺的話,是哪種氣味?是誰的氣味?如果驅趕鯊魚並非上策,那麼水手或飛行員最好的處置應該就是,一開始就不要把牠們吸引過來。

我們先講好消息。人的尿液不會吸引鯊魚。施放量從半茶匙到 1/3 杯不等,泰斯特水箱裡的黑鰭鯊(blacktip shark)都沒有興趣,不會興奮起來,但也沒有排斥。牠們有注意到這東西;這可以從牠們突然轉身或突然出現的「漩渦」看出來。要是有人在游泳池水裡碰到尿液,但是他沒有眉毛可抬,沒有肩膀可聳,大概就會做這個動作。

「什麼味道(☉д⊙)???」圖/Matt Kowalczyk @Flickr

鯊魚對人的汗液也沒有興趣。鯊魚研究室裡面很熱,泰斯特和學生常常用海綿互相吸身體上的汗水,擰到一桶海水中,再悄悄地用虹吸法將海水注入鯊魚水箱中。一般而言,鯊魚會有點嫌惡──這你能怪牠們嗎?泰斯特的汗水尤其讓牠們反彈。水箱中即使只有百萬分之一他的汗水,黑鰭鯊聞到了都會擺擺頭,「立即離開那一區」。

-----廣告,請繼續往下閱讀-----

全身汗液──外分泌汗腺分泌的冷汗──和緊張時流的汗(flop sweat)不一樣。如果泰斯特也有像我摩奈爾化學感官中心的朋友那樣,收集我在壓力之下流出的腋下汗水,他的測試結果可能會不一樣。鯊魚可能會聞到落水者「灰心喪志」、「這個好搞」的氣味,因而轉為攻擊模式。

鯊魚偏好的獵物如果正好處於壓力之下,就會發生這種事。鯊魚會感受到這一餐「不麻煩」, 就會圍過來開始攻擊。泰斯特「用木棍威脅」(其他人的說法是「戳」)侵擾水桶裡的石斑魚,然後把這桶子裡的水──科學措辭叫做「驚恐的石斑魚水」──打入鯊魚水箱,結果激起鯊魚「劇烈的獵食反應」。由於獵物並不在水箱之內,所以我們知道引發鯊魚掠食動作的,並非是「看見」石斑魚或是「聽見」石斑魚的吵鬧聲,而是石斑魚皮膚或魚鰓排出了某些化學成分。但不是只要石斑魚氣味就會有這種效應。將「靜止的石斑魚水」打入水箱,鯊魚都不怎麼理會。

如果鯊魚「聞」到魚群掙扎或驚慌的訊號,便會視他們為容易獵捕的食物。圖/Kiks Balayon @Flickr

魚的血和腸也會引發劇烈反應。魚血和魚腸是高調公告魚憂鬱症(piscine distress)的「喇叭手」。博爾德里奇發現,這裡面傳遞的化學訊息很強,強到讓鯊魚連老鼠都可以吞下去;當然這隻老鼠的皮毛上塗有「鯔魚混合液」(整尾鯔魚和水混合)。但這依舊不是經由一般味覺反應所產生的動作。在另一項研究中,鯊魚起而攻擊一塊海綿;當然,這塊海綿事先有在一碗魚的體液中浸泡過。他寫說:「不論是什麼東西,只要先用魚『汁』處理過,幾乎都會引發鯊魚攻擊。」

這些「會引發鯊魚攻擊」的東西,包括魚叉漁夫(spearfishers)在內。有的魚叉漁夫在海裡游動時,會將漁獲繫在腰際或用細繩拉在後面;漁夫這樣做特別危險。博爾德里奇進行其研究分析期間,「鯊魚攻擊檔案」記載的案例總共有二百二十五起提到現場有受傷的魚或魚血魚腸。泰斯特很驚奇:「鯊魚可以這麼快速並準確地追蹤到懊喪中的魚(比如說鉤在魚鉤上但沒有受傷的魚)。」

-----廣告,請繼續往下閱讀-----

「鯊魚攻擊檔案」中的受害者,有 17% 遭受攻擊時是穿著潛水衣,這一點或許可以用「魚叉獵魚」法來解釋。原來的理論是說,鯊魚把穿著黑色潛水衣的漁夫誤當做是海豹。或許也有這種事情,但是既是魚叉獵魚,那麼較可能的其實是,潛水衣的配件──魚叉和皮帶上流血的魚──引來了鯊魚。

死魚也會發出晚餐鈴聲。泰斯特讓黑鰭鯊和灰鯊接近一系列的魚肉,包括:鮪魚、鰻魚、石斑魚、紅魚、鸚鵡魚、巨蛤、章魚、烏賊、龍蝦等等。測試之後,他把這些以下這些列為吸引鯊魚的因素:鯊魚不喜歡有風險;哪一頓飯不需要打架就有,牠才會去吃;有傷的不錯,死的更好。

萬用驅鯊方法?沒有這種東西啦

這樣,你就會開始懷疑用鯊魚腐肉做出來的所謂「驅鯊劑」的品質了。泰斯特也搞不懂。他從一名漁夫那裡取得一份「號稱驅鯊劑」的東西;從一間漁業實驗室取得一份;自己研究團隊把髻鯊(hammerhead shark)和虎鯊(tiger shark)的肉,放在熱帶氣候中的室外一週,這樣也做了一份。這三份「驅鯊劑」都觀察不到驅鯊效果──相反地,有時還引來了鯊魚。「我們的結果似乎和史布林格的結果有出入,無法做到有說服力的解釋。」泰斯特對於鯊魚處理工廠的反彈所具的強烈吸鯊效果,可能毫無所知。

魚肉引鯊,人肉亦然。二戰期間的鯊魚攻擊報告一再看到屍體受害的案例。水手漂浮在海上, 可能會因為撞到鯊魚或光是用腳攪水,就引來好奇的鯊魚。(博爾德里奇觀察到,光是老鼠在海裡游動時後腿踢到鯊魚的鼻子,都會引發鯊魚驚愕的反應,立即離去。)1945 年,美國海軍印第安納波里斯號被日本潛艇以魚雷擊沉。

-----廣告,請繼續往下閱讀-----

這次沉船事件在後人討論鯊魚攻擊事件時,經常被提到。有本論及此次事件的暢銷書,引用一名倖存者的話說:「鯊魚喜歡追擊死人。」2 美國海軍醫學與外科局進行口述歷史紀錄時,海軍上校路易斯.海內斯(Lewis L. Haynes)回憶說:「老實說,我在海裡漂浮了 110 個小時,完全沒看到有人被鯊魚攻擊……。」他說,那些鯊魚「對於那些死者好像已經很滿意。」他說這次事件總共找回來 56 具斷肢殘骸,但是除了少數幾具,沒有跡象顯示他們生前被鯊魚咬過。

這樣說的話,牠們為什麼要緊跟著救生筏?你問為什麼嗎?牠們是為了救生筏底下的東西而來。救生筏底下其實有成群的魚,也許是為了躲入蔭涼之處,也許是來吃一些也是來躲蔭涼的小型海洋生物。二戰時期的一名水手回憶說:「 大魚來吃桃花魚(minnows),更大的魚來吃大魚,最後是有背鰭的傢伙跑來看看這裡到底是怎麼一回事。 」還有一個故事(我想說這個故事,純粹是因為我喜歡它)說:「鯊魚直接潛入救生筏底下,聚集在那裡……我們全都安靜地坐在那裡,……我們的雷達員因為怕救生筏會翻覆,後來就不再坐在筏邊大便。鯊魚的這種行為反覆了好幾次,但是好像和我們沒有關係。」

這種「沒有關係」後來也一直都是。就我所知,近代史上見諸紀錄海軍官兵被鯊魚咬的事件只有一例。2009 年澳洲雪梨港進行反恐演習時,一名搜索潛水員(clearance diver)被一頭牛鯊(bull shark)一口咬斷手和腳。喬.坎恩(Joe Kane)是海軍特別作戰指揮部(Naval Special Warfare Command)通訊專家。我也問過他海軍海豹特戰隊是否被鯊魚攻擊過。他說:「你這個問題問錯了。問題不是海軍海豹部隊需不需要驅鯊劑,而是鯊魚需不需要驅海豹部隊劑。」

現代美國海軍並沒有正式的鯊魚攻擊訓練課程。一名潛水員記得海軍告訴他的是,如果他感覺有鯊魚危害,就要慢慢潛到水底尋找掩護。1964 年,空軍發行了一部「防備鯊魚」教育電影, 告訴飛行員如果落水後遇到鯊魚,就往水裡吹泡泡或往水面大喊。我問資深鯊魚攝影師羅勃.康特里爾(Robert Cantrell)說他怎麼看這種建議。他幾十年來常常在水下拍攝鯊魚,都不用防護鐵籠。這人對著一群激動的藍鯊(blue shark)用了「會咬人」(nippy)這種形容詞來形容。他給我的回答就和博爾德里奇和泰斯特常常想到的一樣,端看是哪種鯊魚而定。康特里爾說,對著水面大叫可以暫時嚇走牛鯊,但對虎鯊沒有用。吹水泡可以嚇走藍鯊,但是對其他種類的鯊魚一概沒用。

-----廣告,請繼續往下閱讀-----
我吹我吹我吹吹吹,鯊魚快走開!圖/GIPHY

美國空軍最後一次所做的建議讓人存疑:把紙撕碎,丟在自己身邊四周。我假設他們建議這種方法只是要讓鯊魚分心,甚至只是要讓水手自己分心,因為會讓水手專心接受挑戰──漂浮於海中的時候還要尋找紙張。康特里爾有一次試驗把餿掉的貝果丟到海面上,結果虎鯊立刻游過來,牛鯊則是理都不理。所以,康特里爾對潛水人有什麼建議呢?他說,「享受這個經驗吧。」

小姐小姐,你聞起來像海豹?

但我們現在來提一個很多水手心裡都有的一個問題:人血真的會引來鯊魚嗎?這一點博爾德里奇和泰斯特的試驗結果卻不一樣。鯊魚的行為表現有時候像是真的被人血吸引了,但有時候卻又會避開有血區域。泰斯特懷疑血液的新鮮程度或許是個因素。以他自己的試驗而言,黑鰭鯊和灰鯊會被流出僅一、兩天內的血液吸引,而且濃度只有海水的百萬分之零點零一。不過博爾德里奇對「鯊魚攻擊檔案」的分析結果卻與此不符。1115 例中只有 19 例受害者,在攻擊發生當時有流血。

他的結論是:「很多遇到鯊魚攻擊的受害者,都只是受到一次攻擊;然後,雖然此時他們的傷口已經流出很多血,但是鯊魚卻離開了,並沒有進一步攻擊他們。這種情形之下,很難接受『人血極為吸引鯊魚,很容易使鯊魚激動』這種觀念。」

博爾德里奇自己所做的試驗,是以四種鯊魚測試較為創新的選項:在水中游動但身體流血的老鼠。老鼠也是哺乳類,所以牠們的血應該也和人血一樣吸引(或不吸引)鯊魚。結果不出所料,鯊魚一點興趣都沒有。

-----廣告,請繼續往下閱讀-----

有條底線是,鯊魚的攻擊行為和多數動物的攻擊行為一樣,絕大部分都是針對獵物的。如果你的模樣看起來或氣味聞起來不像「晚餐」,牠們就不會把你當「晚餐」對待。掠食者通常只對自己最喜歡吃的生物的氣味有感。鯊魚不吃人肉;雖然也能感測到人血,但是除非很餓,通常不會有什麼動機要追蹤流血源頭。

有些女性喜歡去海水浴場游泳,但是碰到月經來的時候又會害怕。我們上面所說的事實應該會讓她們安心才是。但事實上月經血不一樣,比較獨特,其實是應該要擔心鯊魚的。所以可以的話, 就來個短暫的岸上休假吧!60 年代美國海軍不用女兵,因為女兵有月經。但是國家公園服務處(National Park Service)卻很有興趣。1967 年,兩名女性(其中至少一名正好月經來潮)在冰河國家公園(Glacier National Park)被大灰熊咬死。很多人猜測是她們的月經血引發灰熊攻擊,但野生動物生物學家不相信這種說法。

布魯斯.庫辛(Bruce Cushing)(好玩的是,在後來的熊類攻擊與月經研究中,他的名字被提到時老是被說成布魯斯.嘎辛〔Bruce Gushing〕)決心要收集一些資料。庫辛決定選定北極熊做研究,因為北極熊幾乎完全只吃海豹。這樣就會有一條很清楚的基線,可以對比這種動物對女人月經血的興趣程度。

你要是把海豹油放在風箱裡面,對著關在鐵籠裡的野生北極熊吹,那頭北極熊便會發生庫辛所謂「最極致行為反應」。北極熊會抬頭聞空氣,會大量流口水,會站起來走來走去,喉嚨發出咕嚕咕嚕聲,發出呻吟聲。

-----廣告,請繼續往下閱讀-----

北極熊只有庫辛在風箱裡另外擺了一樣東西時,才會這樣呻吟,這樣東西就是女生用過的月經棉條。無論是雞肉、馬糞、麝香或是沒用過的棉條,都達不到上述的效果。和這一樣東西最接近的,就是月經期間的女性。月經期間的女性不用坐在風箱裡,只要被動地坐在面對北極熊的鐵箱椅子上,驚嘆地球上的生命多麼奇特即可。庫辛也曾經從人體靜脈抽血出來測試,但並沒有讓參與實驗的四頭熊發聲任何反應。

換句話說,用過的衛生棉條之所以會吸引北極熊,不是因為有血,而是因為裡面有一種獨特的陰道裡的東西;是那種──很抱歉──聞起來像海豹身上氣味的分泌物。這很有道理,不是嗎? 女性衛生公司要是請實驗室測試芳香月經產品的效果,實驗室所用的標準氣味就是一種叫做「魚味胺」(fishy amine)的東西。

衛生棉條那種陰道加海豹的氣味實在太強烈、太誘人了,弄到北極熊都沒發現那個東西吃起來不像海豹。52 例中有 42 例,北極熊看到放在木樁頂上的舊衛生棉條(科學措辭叫做「舊衛生棉條木樁」)不是把它吃掉,就是「用力嚼」。唯有使用海豹肉,才會使北極熊更加一致地表現出這種行為──把海豹肉扯下來吃掉。浸泡過一般血液的紙巾──同樣釘在木樁上,好像用骷顱頭警告那些不怕死的叢林探險者一樣──只有三次被北極熊吃掉。

北極熊的這一切表現有告訴我們鯊魚的什麼事嗎?女性該不該擔憂鯊魚?很難講。鯊魚有多喜歡海豹肉?石斑魚死掉之後氣味就像用過的衛生棉條嗎?不知道。但如果我像部分女性讀者一樣月經正好來,我會待在甲板的躺椅上不出去。

庫辛的論文下結論說,既然北極熊喜歡用過的衛生棉條,那麼熊科動物就極可能都會喜歡。但是熊和鯊魚一樣,品種很多。叢林熊類就沒有北極熊那麼喜歡海洋生物的腥味。灰熊喜歡鮭魚,但要新鮮的才吃。黑熊會找垃圾吃,所以天曉得牠們這些年來是怎麼養成這種口味的。

為了獲得定論,美國林務署(US Forest Service)決定開始進行試驗。 1988 年 8 月 11 日, 如果你曾經在明尼蘇達州某處垃圾場丟垃圾的話,你大概就曾經目睹那個情景。北中森林實驗站(North Central Forest Experimental Station)的林.羅傑斯(Lynn Rogers)和兩名同事寫說:「我們把(舊)衛生棉條綁在纖維線上,向覓食的熊扔過去。儘管有些『釣餌』清楚可見──投出去時先從熊的身邊經過,再拉回來,拉到牠的鼻子下方」,但 22 件舊衛生棉條中其中有 20 件熊視若無睹。

「用手」丟給那些經常在實驗餵食站出入(現在沒有了)的黑熊,結果那些衛生棉條的命運也差不多。把 5 片舊衛生棉條綁在一起,丟到一群黑熊前面也是一樣。另外有一次試驗是把濕透的衛生棉放在熊進出的路上,一次放 6 片,其中 4 片浸泡過月經血,一片浸過一般的血,一片是牛肉脂肪。結果 11 頭熊有 10 頭「先聞一聞衛生棉,然後把浸泡過牛肉脂肪的那塊吃掉,就走了。」

這一切,一次一次見證的是國家森林的安全,以及黑熊的耐心。

注釋:

  1. 兩件式泳裝的發明人路易斯瑞爾德(Louise Reard)之所以把他的泳裝叫做比基尼,原是希望這種泳裝會引發「爆炸性反應」。很多人-包括 monokini、tankini、trikini 等各式泳裝發明人-都被 bikini 的「假」字首 bi- 矇騙了很久,以為 bikini 在馬紹爾語是「兩件」的意思。事實上,bikini 在馬紹爾語指的是「椰子之地」──無心插柳,但確實恰好讓人感覺很愉悅。
  2. 譯註:印第安納波里斯號遭日軍潛艇以魚雷擊沉之後,艦上水兵跟著遭到鯊魚群攻擊。

 

 

 

本文摘自《不為人知的敵人:科學家如何面對戰爭中的另類殺手》八旗文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
八旗文化_96
34 篇文章 ・ 20 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
2

文字

分享

0
1
2
為什麼烏鴉會攻擊人?從叫聲來判斷那隻烏鴉是不是在「罵」你!——《烏鴉的教科書》
貓頭鷹出版社_96
・2023/02/15 ・2028字 ・閱讀時間約 4 分鐘

只要說到烏鴉,好像就會有非常強烈的「可怕」、「會攻擊人」的印象。但是「明明就沒做什麼,卻突然攻擊」的例子其實極為罕見。真的伴隨著身體接觸的「攻擊」也是不常見的。因為這類的攻擊而受傷的事情也很少聽說。反而是因慌亂而摔倒才比較危險。

烏鴉想要保護雛鳥

首先,烏鴉對人類採取敵對態度的,只有在保護雛鳥的時期而已。這一點請千萬不要忘記。雖然牠們若是在覓食的時候被打擾的話,可能會發出不開心的叫聲,不過並不會展開攻擊。從烏鴉的眼中看來,人類是既大又可怕的。

烏鴉對於望向巢或看雛鳥的視線非常敏感。由於在野生動物的世界中,並沒有像賞鳥者或是研究者般的奇怪傢伙,所以只要緊盯著巢一直看的,通常都是「想要對巢下手的敵人」。何況是盯著離巢幼鳥看,或是接近離巢幼鳥的話,就確實會認定成「我的孩子有危險了」。

烏鴉為了保護雛鳥,可能會攻擊人類。圖/elementsenvato

被烏鴉「攻擊」的例子中最多的,是當離巢幼鳥站在低矮樹枝或是地面上的時候。剛離巢的幼鳥雖然會拍動翅膀但是卻不能飛(只能說是往下掉的時間花得比較久,卻沒辦法到比原先位置要高的地方去),所以在動來動去的時候,位置就會逐漸降低。

-----廣告,請繼續往下閱讀-----

假如是在森林中的話,半路上會有許多樹枝,總是能夠抓住某處停在比較高的地方;但是假如是在像行道樹那樣孤立的樹的話就停不住,多半會掉到地面上來。這樣一來,親鳥就會為了要保護幼鳥而留在附近,對接近過來的對方一一加以威嚇,發出警告「不要靠近我的小孩」。

在澀谷實際發生過的一個悲劇,是烏鴉在天橋旁邊的行道樹上築巢,巢的高度跟天橋的高度剛好差不多。雖然行經天橋的行人完全沒有注意到巢的存在,但是對烏鴉來說,似乎就變成「好多人特地爬上樓梯來看我的小孩」。

在天橋上築巢的烏鴉,把行人當成攻擊對象。圖/elementsenvato

光是經過也還算了,但是有人完全基於偶然而以巢為背景來拍紀念照片,讓烏鴉氣瘋了,所以不只那個拍照的人而已,有好幾分鐘,烏鴉都對著經過的行人進行威嚇。那應該是「我已經受不了了,不管是你還是他,統統給我滾出去!」的狀態了吧。

因為如此,會發生烏鴉攻擊人類事件的時機,是在幼鳥離巢的季節,也就是集中在五月到六月之間。受害報告的統計也是如此。  

-----廣告,請繼續往下閱讀-----

話說回來,烏鴉在威嚇、攻擊時的順序究竟是怎樣的呢?假如知道的話,應該就不再會認為烏鴉是「突然」攻擊過來了吧。

烏鴉生氣時叫聲的變化

首先,烏鴉會先以聲音進行威嚇。可能會有人認為牠們平時就在KaAKaA 叫個不停,應該無法區別;不過牠們要是平時的叫聲是「KaA、KaA」的話,在這時候的叫聲就會變成很激烈的「KaAKaAKaAKaA !」。是不停反覆的快速連續叫聲,而且每一聲的音量都很大。只不過在這個階段時還不需要害怕。那不是對你叫,通常是在對經過那附近的別隻烏鴉叫。

「KaAKaAKaA」脾氣正常的烏鴉叫聲。圖/《烏鴉的教科書》。
「KaAKaAKaAKaA KaAKaAKaAKaA」對其他烏鴉生氣的叫聲。圖/《烏鴉的教科書》。

  

但是假如烏鴉很明顯的是朝著自己的方向叫、跟在後面過來、到低的地方來的話,就表示你被烏鴉盯上了,也就是「那裡的那個人,就是你啦」的被指名狀態。假如牠的叫聲是沙啞的「GaRaRaRaRa……」,就表示牠相當生氣。有時還會聽到像「KoRa ∼!」般的叫聲(附帶一提的是,白頰山雀的威嚇聲聽起來是「AcChi ∼ IKe」,也就是感覺起來好像在說「A-Chi-I-Ke」)。

「GaRaRaRaRa……」烏鴉在對你生氣(指名狀態)的叫聲。圖/《烏鴉的教科書》。
「KoRa~!」烏鴉爆氣中的叫聲。圖/《烏鴉的教科書》。

當叫了半天也沒有效的時候,烏鴉會開始用喙部敲擊牠停棲的樹枝。以人類來打比方的話,就像是在抖腳抖個不停,或是很神經質的用指頭敲打桌子的那種感覺。有時候還會把那附近的樹枝或葉子給撕扯下來。

-----廣告,請繼續往下閱讀-----

翻譯牠的意思,就會是「老子已經叫你滾開了,你還沒聽見嗎,白癡」。此外,牠把小樹枝撕扯下來的行為有時會被媒體寫成是對準人類「爆炸攻擊」,不過牠們真的只是由於很不高興的在亂丟,即使有打到人也純粹只是偶然而已。

——本文摘自《都市裡的動物行為學:烏鴉的教科書》,2023 年 1 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。