0

1
1

文字

分享

0
1
1

肺不只是呼吸器官,也是製造血小板和支援造血功能的要塞!

Gilver
・2017/04/07 ・3053字 ・閱讀時間約 6 分鐘 ・SR值 556 ・八年級

「肺比我們預期的更為複雜,新證據顯示它們也在造血功能中扮演要角。」魯尼教授表示。

今年3月,一份有關於肺的造血功能的重大發現登上了著名學術期刊《自然》(Nature):科學家透過小鼠實驗發現,肺不僅是維繫生命的呼吸器官,還貢獻了體內一半以上的血小板;除此之外,肺還能和骨髓在造血任務上互相合作,在骨髓的造血功能受損時派出造血先驅細胞(haematopoietic progenitors),支援血球和血小板的合成。

圖1.人類肺臟的手繪圖。圖/Wikipedia

在每一次的吸吐之間,我們能夠感受到胸腔中的肺像是氣球一般,反覆著鼓脹與收縮的過程。新鮮的氧氣沁入肺泡,並且被流經的紅血球捕捉、運送到身體的每個角落,讓細胞進行呼吸作用、產生能量。然而,肺還有你感覺不到的另一面:它還能幫忙製造血小板

為什麼這麼晚才發現肺的新功能?其實不是

數十年來科學家密集的研究骨髓,累積了相當多的證據支持「骨髓是製造所有血液組成的『中央工廠』」的想法。

在骨髓裡頭住著大多數負責造血的幹細胞。骨髓會先產生造血幹細胞(haematopotoietic stem cells, HSC),這些細胞接著再成為各種造血先驅細胞[註],有的可能會運輸到骨髓以外的其他地方,並且受到不同調節因子的誘導,最終成為我們體內的血液組成--包含了捍衛身體免疫的多種白血球、搬運氧氣的紅血球,還有在受傷時促進結痂的血小板。

-----廣告,請繼續往下閱讀-----
  • [註]:先驅細胞(progenitor cells)指的是幹細胞即將轉變為特定種類細胞的中間時期,專一性比幹細胞來得高,但是細胞分裂的額度則較幹細胞少。
圖2.造血幹細胞(HSC)分化成各種血液組成的示意圖,特別注意造血先驅細胞(progenitor)和最下排的成員:紅血球(Erythrocyte)、由巨核細胞(Megakaryocyte)分裂出的血小板(Platelet),還有其他白血球的成員。圖/パタゴニア@Wikimedia Commons
圖3.位在骨髓中的巨核細胞製造血小板過程的示意圖。圖/Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol, 201(6), 785-796.

至於肺這個用來呼吸的器官,怎麼會跟造血功能扯上邊?而且到2017年才發現?

其實早在1937年,豪爾(Howell)和唐納修(Donahue)兩位科學家就已經提出肺也會製造血小板的想法!他們比較了貓、狗的血液在流入肺部前後的組成,發現流出肺部的血液含有更多的血小板,以及更少的巨核細胞(megakaryocyte),而巨核細胞正是負責製造血小板的細胞。因此,肺可能也會製造血小板。

豪爾和唐納修兩人的推測,在今年3月才由艾瑪.勒弗雷凱斯(Emma Lefrançais)等人提供了眼見為憑的直接證據。他們利用螢光標記和新的顯微技術研究小鼠肺臟移植,直接看見巨核細胞在肺臟細胞之間穿梭的模樣,如下方連結的影片(閃耀綠色螢光的細胞為移植肺部中的巨核細胞)。

肺:令人意外的血小板工廠

來自加州大學舊金山分校(University of California, San Francisco)勒弗雷凱斯等人的研究的成功之處,在於他們使用了雙光子活體顯微術(2-photon intravital microscopy, 2PIVM)這種新技術,能夠觀察到肺裡活生生的巨核細胞活動的情形。

-----廣告,請繼續往下閱讀-----

根據免疫染色和檢測基因表現,這些位在肺臟的巨核細胞比起骨髓裡的還要不成熟一些;雖然有700個以上的基因表現有差異,但在與巨核細胞、血小板相關途徑的基因表現則類似。研究團隊推測它們可能是從骨髓發跡,接著移動到肺組織的管隙之間,然後開始製造血小板。

更令人驚訝的是,經過估算,肺裡的巨核細胞每小時製造超過1000萬個血小板,意味著至少有總數一半以上的血小板都在肺裡合成!肺作為骨髓以外令人意外的血小板工廠,生產的量可說是相當大呢。

「當我們發現這麼大量的巨核細胞在肺部裡活動,我們知道我們必須繼續下去。」勒弗雷凱斯說。

當研究團隊把細胞帶有螢光標記的小鼠肺臟,連同它裡頭的巨核細胞一同移植到患有血小板減少症(thrombocytopenia)的突變鼠體內,顯微鏡下移植的肺臟爆發出許多閃著綠色螢光的血小板,並且將突變鼠體內的血小板含量迅速補充到正常水平,效果持續數個月。

這個驚人的發現如果能夠應用到人類,不但會影響治療肺發炎、肺出血、肺部移植等等的觀念,或許還能讓全世界百萬名受血小板減少症(thrombocytopenia)之苦的患者都能受惠。

-----廣告,請繼續往下閱讀-----

然而,本篇研究還有一個更大的發現--肺裡除了巨核細胞,還住著造血先驅細胞;更令人驚訝的是,它們還可以從肺遷徙、回到骨髓,支援造血功能!

圖/Giphy

造血本部骨髓失效,向肺部請求支援!

除了巨核細胞,科學家們還驚訝的在肺部發現了造血先驅細胞(可參照圖2的造血幹細胞分化示意圖)以及巨核先驅細胞(megakaryocyte progenitor cells),每隻小鼠的肺裡估計約有100萬個。

科學家接著測試了當骨髓不再正常造血,移植肺能不能把失靈的造血系統救回來。結果發現,當帶有螢光標記的肺移植到骨髓不再有造血幹細胞的基改小鼠體內時,救回來的不只有血小板,還包含了嗜中性球、B細胞和T細胞;除此之外,在接受移植的小鼠脾臟和骨髓裡,還可以發現數種造血幹細胞、造血先驅細胞和巨核先驅細胞。

這是科學界首次發現造血前驅者可以從肺轉移到骨髓,彌補造血幹細胞和血球減少(cytopenia)等缺陷的重大研究成果。

-----廣告,請繼續往下閱讀-----
圖4.本研究提出理論模型示意圖。本圖改自原研究Lefrançais et al. (2017),原圖請點按此處連結

幹細胞的體內留學,成為醫療的意外福音

「未來以血小板為方法治療血小板疾病時,應該將重點轉向肺臟。」本研究的通訊作者、同時也是2PIVM系統開發者之一的馬克.魯尼(Mark Looney)教授說。他將本篇研究的成果,形容為是一場「幹細胞的留學」:

「造血幹細胞和先驅細胞們似乎會在肺和骨髓之間往返,比起過去所認知的活動性更高。我們見證了更多的造血幹細胞不僅只是住在同一個地方,而是透過血流往更多處移動。或許,幹細胞在不同器官之間『留學』對它們的養成來說只是稀鬆平常。」魯尼教授說。

這也挑起了許多相關的問題,例如:骨髓究竟是如何和肺互相合作,共同維繫健康的造血系統?我們是不是也低估了其他器官的功能?肺部受損、或是接受肺部器官移植的患者,對造血功能又有什麼影響?

雖然這篇研究目前僅止於在小鼠實驗中執行,但如果能夠在人體重複實驗結果,不但會衝擊到全世界數百萬名血小板減少症的案例診斷,也無疑會開啟了更多新的課題與議題等待被研究、討論和解答。

參考資料

原文研究

Lefrançais, E., Ortiz-Muñoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., . . . Looney, M. R. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, advance online publication. doi:10.1038/nature21706

-----廣告,請繼續往下閱讀-----

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
Gilver
28 篇文章 ・ 3 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。

0

0
0

文字

分享

0
0
0
如何靠溫度控制做出完美的料理?
鳥苷三磷酸 (PanSci Promo)_96
・2024/06/21 ・2705字 ・閱讀時間約 5 分鐘

本文由 Panasonic 委託,泛科學企劃執行。 

炸雞、牛排讓你食指大動,但別人做的總是比較香、比較好吃?別擔心,只要掌握關鍵參數,你也可以做出完美料理!從炸雞到牛排,烹調的關鍵就在於溫度的掌控。讓我們一起揭開這些美食的神秘面紗,了解如何利用科學的方法,做出讓人垂涎三尺的料理。

美味關鍵 1:正確油溫

炸雞是大家喜愛的美食之一,但要做出外酥內嫩的炸雞,關鍵就在於油溫的掌控。炸雞的油溫必須維持在 160 到 180℃ 之間。當你將炸雞放入熱油中,食物的水分會迅速蒸發,形成氣泡,這些氣泡能夠保證你的炸雞外皮酥脆而內部多汁。

水的沸點是 100℃,當麵衣中的水分接觸到 160℃ 的熱油時,會迅速汽化成水蒸氣。這個過程不僅讓麵衣變得酥脆,也能防止內部的雞肉變得乾柴。

-----廣告,請繼續往下閱讀-----

如果油溫過低,麵衣無法迅速變得酥脆,水分和油脂會滲透到食物中,使炸雞變得油膩。而如果油溫過高,水分會迅速蒸發,使麵衣變得過於硬或甚至燒焦。

油炸時,麵衣水分會快速汽化。 圖/Envato

美味關鍵 2:焦糖化與梅納反應

另一道美味的料理——牛排。無論是煎牛排還是炒菜,高溫烹調都會帶來令人垂涎的香氣,這主要歸功於焦糖化反應和梅納反應。

焦糖化反應是指醣類在高溫下發生的非酵素性褐變反應,這個過程會產生褐色物質和大量的風味分子,讓食物變得更香。而梅納反應則是指醣類與氨基酸在高溫下發生的反應,這個過程會產生複雜的風味分子,使牛排的色澤和香氣更加迷人。

要啟動焦糖化反應和梅納反應的溫度,至少要在 140℃ 以上。如果溫度過低,無法啟動這些反應,食物會顯得平淡無味。

-----廣告,請繼續往下閱讀-----
焦糖化反應


焦糖化反應與梅納反應。圖/截取自泛科學 YT 頻道

油溫與健康

油溫不僅影響食物的風味,也關係到健康。不能一昧地升高油溫,因為每種油都有其特定的發煙點,即開始冒煙並變質的溫度。當油溫超過發煙點,會產生有害物質,如致癌的甲醛、乙醛等。因此,選擇合適的油並控制油溫,是保證烹調健康的關鍵。

說了這麼多,但是要怎麼控制溫度呢?

各類油品發煙點 。圖/截取自泛科學 YT 頻道

科學的溫度控制

傳統電磁爐將溫度計設在爐面下,透過傳導與熱電阻來測溫,Panasonic 的 IH 調理爐則有光火力感應技術,利用紅外線的 IR Sensor 來測溫,不用再等熱慢慢傳導至爐面下的溫度計,而是用紅外線穿透偵測鍋內的溫度,既快速又精準。

而且因為紅外線可以遠距離量測,如果甩鍋炒菜鍋子離開爐面,也能持續追蹤動態。不會立即斷開功率關掉,只要鍋子放回就會繼續加熱,效率不打折。

-----廣告,請繼續往下閱讀-----

好的溫度感測還要搭配好的溫度控制,才能做出一流的料理。日本製的 Panasonic IH 調理爐,將自家最自豪的 ECONAVI 技術放進了 IH 爐中。有 ECONAVI 的冷氣能完美控制你的室溫,有 ECONAVI 的 IH 調理爐則能為你的料理完美控溫。

有 ECONAVI 的 IH 爐不只省能源、和瓦斯爐相比減少碳排放,更為料理加分。前面說了溫度就是一切的關鍵,但是當我們將食材投到熱鍋中,鍋中的溫度就會瞬間下降,打亂物理與化學反應的節奏,阻止我們為料理施加美味魔法。

所以常常有好的廚師會告訴我們食物要分批下,避免溫度產生太大變化。Panasonic IH 調理爐,只要透過 IR Sensor 一偵測到溫度下降,就能馬上知道有食材被投入並立刻加強火力,讓梅納反應與焦糖化反應能持續發揮變化。而當溫度回到設定溫度,Panasonic IH 調理爐也會馬上將火力轉小,透過電腦 AI 的迅速反應,掌握溫度在最完美區間不劇烈起伏。

不僅保證美味關鍵,更不用擔心油溫超過發煙點而導致油品變質,讓美味變得不健康。

-----廣告,請繼續往下閱讀-----
透過 IR Sensor 精準測溫並提升火力。圖/截取自泛科學 YT 頻道
IH 調理爐完美控溫 。圖/截取自泛科學 YT 頻道

舒適的烹飪環境

最後,IH 爐還有一個大優點。相比於瓦斯爐,因為沒有使用明火,加熱都集中在鍋具。料理過程更安全,同時使用者也不會被火焰的熱氣搞得心煩意亂、汗流浹背,在廚房也能過得很舒適。而且因為熱能集中,浪費的能源也更少。

因為沒有使用明火,料理過程安全又舒適。圖/截取自泛科學 YT 頻道
Panasonic IH調理爐火力精準聚集在鍋內。圖/Panasonic提供

為了更多的功能、更好的效能,我們早已逐步從傳統按鍵手機換成智慧型手機。一樣的,在廚房內,如果你想輕鬆做出好料理,同時讓烹飪的過程舒適愉快又安全。試試改用 Panasonic IH 爐,一起享受智慧廚房的新趨勢吧!👉 https://pse.is/649gm5

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 306 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
71 篇文章 ・ 46 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
古人用的超大型手機?從烽火臺到智能手機:通信科技的演進
數感實驗室_96
・2024/05/13 ・883字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

現代人手機普及率極高,你可能正在用手機閱讀這篇文章。

仔細想想,我們每天使用的手機真的很厲害。只需幾下操作,就能傳訊息、視訊通話,還能上網看影片、玩遊戲、使用社群網路等。

你可能知道全世界的第一支手機是 Motorola 在 1973 年 4 月 3 日推出的黑金剛,重達 2 公斤的程度。不過,早在幾千年前,其實已經有「手機」存在了。

-----廣告,請繼續往下閱讀-----

當時的手機不只兩公斤重或兩公升水壺大,甚至是有好幾層樓那麼高,那這些手機的傳輸速率也超級慢,看影片一定是不可能,連打電話聊天都辦不到。超級陽春,基本上只能傳遞「有」或「沒有」這樣的是非題。

應該有些人猜到了,其實就是「烽火臺」。

烽火臺是中國古代為了傳遞軍情所設計的通信系統。一座烽火臺上有幾位士兵,備有大量的稻草與木柴,如果看到敵人侵犯,或是前後的烽火臺燃起狼煙,士兵們就會立刻燃燒乾柴,釋放狼煙,傳遞攸關國家存亡的重要資訊。雖然,烽火臺的尺寸大小與現今我們常用的手機差很多,傳輸能力也差很多,但烽火臺還真是上古時代標準的通信設施哦!

接下來還會推出一系列「通信科技」相關的節目,內容囊括了通信發展的歷史故事、重要的通信科學家、通信相關的技術知識。

-----廣告,請繼續往下閱讀-----

讓你認識新聞報導中,常聽到的一些通信專有名詞,什麼是頻帶、頻寬?現代通信技術如此厲害的關鍵又在哪裡?甚至,這些技術跟我們平常在學校裡學到的各科知識,又有怎樣的連結呢?

這系列將用影片帶領大家進入這個有趣、改變全人類生活的通信世界,敬請期待哦!有更多想法也可以留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
71 篇文章 ・ 46 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/