0

1
0

文字

分享

0
1
0

新元素的發現很重要嗎?從113號元素Nihonium談基礎科研

活躍星系核_96
・2017/04/01 ・3002字 ・閱讀時間約 6 分鐘 ・SR值 540 ・八年級
  • 文/Ryan Tang
    出生香港的80後,在東京大學成為核子物理博士。現在於日本理化學研究所工作。經常要向親朋好友解釋核子物理不是關於核電廠而煩惱。

最近不少教科書要重寫了,因為科學家發現和人工合成了 4 個新元素。它們分別是第 113 號元素 Nihonium(Nh)、第 115 號元素 Moscovium(Mc)、第 117 號元素 Tennessine(Ts)和第 118 號元素 Oganesson(Og)。我有幸能於元素 113 的發現之地,日本理化學研究所,和大家淺淡元素,發現 Nihonium 的過程及其意義,最後討論基礎科研對社會的關係與貢獻。

source:Engineersonline

原子是由外層電子和中心原子核組成。原子核又分別由質子和中子組成。不同數目的質子構成不同的元素。例如氫是最輕的元素,只由一粒質子組成。生命所必須的元素-炭是由六粒質子組成,加上不同數目的中子組成不同的炭同位素。有些同位素比較穩定,可是更多是不穩定,且有放射性,衰變成另一元素或同位素。

例如穩定的碳-12 是由 6 粒質子和 6 粒中子組成;相反,碳-14 則多了 2 粒中子,變得輕微不穩定了,其半衰期為 5,400 年。另一種同位素碳-10,因少 了 2 粒中子,也是不穩定的。實驗室人工合成的碳-20,質子對中子比例為 6:14,差不多有 2 倍之多,屬於極不穩定的同位素,其半衰期只有十萬分之二秒——就算在宇宙中自然產生也會立即衰變。我們看看核素圖(圖 1),縱軸是中子數,橫軸是質子數。其中黑色的是穩定原子核,其他顏色是不穩定原子核(帶放射性)。可見,只有適當質子數和中子數的原子核才會穩定。越重的穩定原子核就需要越多的中子以維持穩定,讀者不妨想想為什麼(註 1)。

只有適當質子數和中子數的原子核才會穩定。圖/wikimedia

概念上,任何元素(原子核)只是不同數目的質子和中子的組合,好像任何人只要願意也可以合成任何新元素,發現新元素好像只是技術的問題,跟理論無關。現實比想像中複雜,有理論也有技術的限制。簡單的想法是,把兩粒自然界最重的鈾原子核放在一起,不就可以像泥膠混合般得出更重的原子核,不是嗎?神奇的大自然告訴我們不是。

在上圖中,越重的穩定原子核,就需要更多中子才會穩定。若把兩粒鈾原子核合成,就沒有足夠中子束縛整個新原子核,只要一合成就會裂解,分散成數個原子核。而且,要把兩粒帶正電荷的原子核合在一起,就需高速碰撞以抵抗靜電斥力。可是,太高速又會把原子核撞散,太低又不足以其中抵抗靜電斥力。再者,原子核很小,要增加碰撞機會就要加強原子核流束流量,打中後又要再偵測確認,涉及大量尖端科技。

在 2004 年,日本理化學研究所的森田浩介研究組1,以大約十份之一光速(剛剛可抵抗靜電斥力),讓鋅- 70(註 2)碰撞鉍- 209(註 3)做的環形標靶。標靶同時高速轉動,散發打擊時產生的熱量。當鋅- 70 和鉍- 209 碰撞後,有些融合,有些分裂,產生很多不同原子核。這些原子核會注入一個由大型雙極磁鐵為主的分離器2以分離出元素 113。為了確認是元素 113,分離器後放置多個探測器, 以偵測出元素 113 衰變出的一連串氦-4 (註 4)。實驗總共發現了 4 粒元素 113 ,其合成機率為 1020 分之 1。從實驗可知道元素 113 的物理性質,例如結合能量,半衰期,衰變過程等等,把科學知識界線往前推進。

森田浩介教授(左)。source:Wikimedia

核子物理發展以來,人類一直很好奇為什麼地球上的元素會如此分佈、為什麼黃金那麼稀少,為什麼稀土元素又那麼稀有。這只是地球獨有現象,還是其他行星,甚至其他星系也一樣呢?現在已知原子核有三千多種,只有 278 種是穩定。其它原子核雖不穩定,但也是受束縛(註 5)。那麼究竟邊界在哪裏(註 6)?為什麼邊界在那裏?現今的核力理解仍不足以作準確而一致的預測,而所有預測也必須有實驗證據支持。其中一項預測指元素 126 附近存在一個「穩定島」,有一些未發現的極重穩定元素,若然是真,那就跟希格斯粒子發現一樣有重大意義。由此可見,合成新元素的意義不只合成,還驗證我們對核力理解。嚴格來說,合成新元素和預測未來本質上是沒有太大分別,都是驗證我們對世界的理解。

人們一直很好奇為什麼地球上的元素是這樣分布,這只是在地球上,還是火星金星水星以及其他星系也是這樣呢?圖/By NASA, Public Domain, wikimedia commons

通過合成新元素,我們可以更了解束縛原子核的核力,解開太陽系組成,前世和今生的秘密,從而推論我們在宇宙中的位置。在應用方面,了解原子力有助我們處理核廢料,研發更可靠的反應堆。不少科技也可同步發展,例如冶金、新材料研究、低溫技術、真空技術、超導、新型雷射、高速晶片、資訊處理等。實驗設備和檢測器設計建造都需要和工業合作。有時研究所需的科技未必存在,「迫使」工業(或夥同其他研究所)研發新技術。例如建造大型超導磁鐵,因而開發的低溫、真空、治金、冷卻、測量等技術,為以後建造性能更優越的磁鐵打下基礎。而這些技術均可以廣泛應用於不同領域,例如醫療、災難拯救、交通、輸電等。

由此可見,科研和社會是息息相關,而香港人以為做科研是很「離地」,只是管中窺豹。我以為是因為香港沒有成熟科研體系,很少跨學科研究和合作,缺乏本土工業作為科研與社會的橋樑,知識要很久才能走出研究所。而大眾也誤解「IT」就是科研,身邊很少朋友是研究員,也無從知道科研為何物,就更加不明白科研對社會的關係及貢獻。科研、工業和社會,三者其實是互相支持的。科研帶領工業技術的發展,工業令社會進步,而社會進步又能支持科研。或者反過來,社會的需要推動工業,工業促進科學的發展,科學又培養人材以貢獻社會。其實全球化之下,各國的科研一直為香港帶來好處。例如電腦電信等科技,沒有多少是來自香港的,但香港在售賣和應用這些技術是領先世界。

  • 編按:本文作者為香港人,因此此段以作者的角度看香港的科學研究。

總括來說,發現新元素除了需要匯聚頂尖技術與頭腦,也會有助社會發展。合成元素 113雖然是小發現,沒有即時的應用,但是其成功是集合整個日本科學、工業及社會力量,取名為 Nihonium 是當之無愧。縱觀科學發展史,很多科學發展並非憑空誕生,科學進步不是跳躍式,而是一步一步「走出來」:由無數發現累積而成。合成新元素正如當年太空人阿姆斯壯在月球上說:「這是我一小步,卻是人類一大步。」

參考資料:

  • K. Morita ​et al. ​: J. Phys. Soc. Jpn. 73(2004) 2593-2596
  • K. Morita ​et al. :  J. Phys. Soc. Jpn. 73(2004) 1738

註解:

  • 註​ 1​:質子帶正電荷,會產生強大的靜電斥力,只靠質子和質子間的強核力不足以束縛整個原子核。而且靜電斥力是長程力,整個原子核都感受到,但強核力則為短程力,只有附近的核子才能感受到。所以,需要更多的中子,加強強核力的強度和分布,才能維持原子核穩定。不過,太多中子又會令原子核變得不穩定。這是因為 中子和中子之間的強核力也不足以束縛這兩粒中子。原子核複雜及神奇之處可由此可略知。
  • 註 2:鋅(Zn),30 粒質子,又稱亞鉛。穩定同位素是鋅-66,鋅-67,和鋅-68。鋅廣泛應用於工 業,也是很多合金不可或缺的元素。
  • 註 3:鉍(Bi),音必,83 粒質子。鉍-209是穩定的。由於化學特性跟鉛相似,而又不像鉛般傷害人體,所以經常替代鉛。例如在很多化妝品和藥物中。
  • 註 4:氦(He),由兩粒質子組成。氦-4 是穩定的原子核。其結合能為所有原子核中最高。
  • 註 5:就如在一口井中,在井底是穩定。在井中間是不穩定,會掉落井底。在井中,沒有外力下不能離開井,所以是受束縛的。在井外,就沒有受井的束縛。
  • 註 6:以註 5 的比喻,即井口有多大,形狀如何。

數感宇宙探索課程,現正募資中!

文章難易度
活躍星系核_96
755 篇文章 ・ 89 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

3
0

文字

分享

0
3
0

調香師的秘密:「糞臭素」挑起你骯髒的慾望

胡中行_96
・2022/05/16 ・2039字 ・閱讀時間約 4 分鐘

倫敦高級區梅費爾(Mayfair)的聯排透天洋房裡,他與屋主近身互動。六呎高,湛藍的雙眸,古銅的肌膚,寬闊的下顎,銀髮一絲不苟地貼齊,以及一縷迷人的香氣:肉桂、皮革和不可言喻的香味,他確定迎面襲來的深刻,源自另一個時空。

梅菲爾位在倫敦西區,它是世界上最昂貴的地區之一。圖/Wikipedia

「當你嗅聞,你是用腦在聞。最原始的,處理記憶和情緒的部位。」
屋主解釋:「若芸芸眾生試圖尋覓自我的氣味,那我正在打造專屬你的身份。」

關於香水的秘密

一場訪談,讓男性時尚雜誌《GQ》的作家 Michael Paterniti 化身高級訂製香水的顧客,而江湖人稱「香水界情色男優」(the Pornographer of Perfume)的屋主 Roja Dove,正優雅地介紹混香的秘密。「我使用『糞臭素』,一種帶有糞便氣息的醜陋分子。男女性器皆與肛門比鄰,底蘊裡一丁點的『糞臭素』,便能喚起骯髒的慾望。」[1]

Roja Dove 是一位英國調香師。圖/Wikipedia

糞臭素是怎麼來的?

來到住處之前,兩人在麗池飯店(Ritz Hotel)旁的沃爾斯利餐廳(the Wolseley)用過午餐。此時他們的消化系統正將蛋白質,分解成胺基酸(amino acid)。接著,腸道內的菌落會先進行「去胺作用」(deamination),用氫去代換胺基。於是,有一種叫做「色胺酸」(tryptophan)的胺基酸,就變成「吲哚-3-乙酸」(indole-3-acetic acid,簡稱「IAA」)。

再來,乳酸桿菌(Lactobacillus)、梭菌(Clostridium)和類桿菌(Bacteroides),透過「去羧作用」(decarboxylation;羧,注音ㄗㄨㄟ)把 IAA 中的羧基(carboxylic acid group)換成氫,人體內的「糞臭素」(skatole;即3-methylindole)就誕生了[2][3][4]

Roja Dove 的調香手法

在正式調香之前,Roja Dove 會提供約莫 200 張的試香紙,讓訂製高級香水的顧客挑選最能觸發當下感覺,並連結過往回憶的幾種氣味。Roja Dove 將以它們為發想的根據,把原料輕拍到試香紙上,再把試香紙與一只金屬小風車連結。當小風車運轉,微風迎面吹來,他便能感受這些原料的效果。

當然,調香運用的糞臭素不是靠「人體製造」,而是在實驗室或工廠裡「人工合成」。1883 年德國化學家費雪(Hermann Emil Fischer, 1852-1919)發明了「費雪吲哚合成」(Fischer Indole Synthesis):一種苯肼(phenylhydrazine)和醛(aldehyde)或酮(ketone),透過酸觸媒(acid catalyst)催化產生的作用。一般罐裝糞臭素,便是這麼來的[2][5]

從溝通、聞香、構想、嘗試、製作到完成需要耗時一到二年。圖/Pixabay

從溝通、聞香、構想、嘗試、製作到完成,長達一、二年後,每 3.4 盎司(100.55 毫升)要價 4 萬美元的訂製香水,才會被呈現在顧客面前。所幸,對花不起重金與不特別愛好香水的人來說,還是有其他巧遇糞臭素的機緣。因為某個程度上來說,糞臭素就像愛。它撲朔迷離地存在生活中出乎意料之處:香水、茉莉、橙花、甜菜、香菸、糞便、煤焦油與草莓冰淇淋。糞臭素時臭時香,載舟亦能覆舟,令人欲拒還迎。

氣味的關鍵在於濃度

氣味由香變臭的關鍵,在於濃度。像是過多的愛,使人無法擔待。以體積比來說,一旦超過 60 pptV(0.327 ng/L)[註1],就會開始臭得一去不返[7]。如果以重量比計算,健康人體製造的糞便中,糞臭素濃度約為 5 μg/g,但消化道疾病患者,則可高達 80 到 100 μg/g[註2]。換句話說,腸道保健雖然不會讓人芬芳馥郁,但至少能避免如廁之後臭名遠揚[8]

回顧過去的調香職涯,Roja Dove 感嘆上等的原料不再是小農收成,產地直銷,人工合成的產物也逐漸取代天然素材。

「的確,我們必須在香水裡添加合成物。」他向時尚作家 Michael Paterniti 坦承,那是為了襯托自然的味道,但是如果大比例的使用人造成份,「合成的香水聞起來,就永遠僅是人工的氣息。」然而大時代的趨勢,就連知名調香師也無力回天。諷刺的是,在這場產業變遷的遺憾裡,得知糞臭素並非天然,卻多少能帶給香水顧客卑微的慰藉。

註解

  1. pptV(parts per trillion by volume),則是兆分之一體積比。ng/L,指每公升幾奈克。
  2. μg/g,又作 mcg/g,指每公克中有幾微克,也就是 ppmW(parts per million by weight)百分之一重量比。

參考資料

  1. How to Smell Like a God (GQ, 2014)
  2. Skatole – A Natural Monstrosity In Perfume, Parliaments, Produce And Poop (American Council on Science and Health, 2020)
  3. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism (Frontiers in Cellular and Infection Microbiology, 2018)
  4. 羧酸(教育部重編國語辭典修訂本,臺灣學術網路第六版)
  5. Emil Fischer Biographical (the Nobel Prize)
  6. Skatole (American Chemical Society, 2021)
  7. Identification, quantification and treatment of fecal odors released into the air at two wastewater treatment plants (Journal of Environmental Economics and Management, 2016)
  8. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases (Frontiers in Pharmacology, 2021)

數感宇宙探索課程,現正募資中!

胡中行_96
29 篇文章 ・ 26 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。臉書:荒誕遊牧。