0

0
0

文字

分享

0
0
0

陳睿刺足大花蚤:9900 萬年前的瞬間,成了永恆的燦爛

蕭昀_96
・2017/11/18 ・2482字 ・閱讀時間約 5 分鐘 ・SR值 565 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

「心酸埋於土壤,過往都遺忘,化作一顆琥珀的模樣。」《郁可唯‧琥珀》

心型的琥珀吊飾。source:Pixabay

琥珀是由古代植物分泌的樹脂經長期掩埋而最終形成的珍貴半寶石,琥珀生物化石則是在形成琥珀的樹脂在流出時「活埋」了週遭環境中的生物,是意外失足的心酸古墓,也是探索古生物的珍貴寶庫。來自緬甸克欽邦出產的琥珀年代約為 9900 萬年前 (晚白堊世、森諾曼期),保存大量完好的古代生物遺骸,為近年古生物學者所專注的其中的焦點之一。

大花蚤,寄生於昆蟲的甲蟲

大花蚤 (Ripiphoridae)是外形楔形、駝峰狀的甲蟲,幼生期時為寄生性,寄主包括蟑螂、蜂類或其他甲蟲,最古老的大花蚤化石紀錄為來自內蒙古道虎溝化石層生物群 (九龍山組,中侏儸統,約 1.65 億年前)的媧皇始源大花蚤 Archaeoripiphorus nuwa Hsiao, Yu & Deng, 2017,為筆者於今年年初發表的研究 [註1],其餘的大花蚤化石紀錄不多,大多為新生代的琥珀化石,中生代的部分則僅有的四例的種類描述自緬甸和法國琥珀。有關琥珀化石和大花蚤科的介紹也可以參考這兩篇文章〈羅塞塔始源小菊虎: 9900 萬年前失足,從此凝結在時間中〉和〈以創世女神為名的史前寄生甲蟲——媧皇始源大花蚤〉。

媧皇始源大花蚤 Archaeoripiphorus nuwa Hsiao, Yu & Deng, 2017,是已知大花蚤科年代最早的化石紀錄,來自侏儸紀中期的內蒙古森林,圖/作者提供。

大花蚤目前複分成 5 個亞科,其中細身大花蚤亞科 (Pelecotominae)的翅鞘完整覆蓋住腹部,被認為是較原始的類群。目前已知細身大花蚤亞科的成員在幼生期時會寄生在朽木棲的甲蟲類群幼蟲,例如竊蠹蟲,雌蟲會將卵產在朽木上靠近竊蠹蟲幼蟲製造出的坑道開口附近,細身大花蚤的幼蟲孵化後會去尋找適合寄生的竊蠹蟲幼蟲,穿越其表皮進行內寄生,並且在隔年從寄主原先用來化蛹所製作的蛹室中破蛹而出。

目前最早的細身大花蚤亞科化石紀錄為描述自緬甸琥珀的海蒂扇角大花蚤 Flabellotoma heidiae Batelka, Prokop & Engel, 2016 [註2]。

海蒂扇角大花蚤 Flabellotoma heidiae Batelka, Prokop and Engel, 2016,是已知生存年代最早的細身大花蚤亞科化石紀錄,來自晚白堊世的緬甸。圖 / Batelka, J., Prokop, J., Engel, M.S. 2016. New ripiphorid beetles in mid-Cretaceous amber from Myanmar (Coleoptera: Ripiphoridae): First Pelecotominae and possible Mesozoic aggregative behaviour in male Ripidiinae. Cretaceous Research 68, 70–78.

日前,同為石探記科學團隊的我和臺灣師範大學黃嘉龍博士則發現了緬甸琥珀中已知的第四種大花蚤,同時也是細身大花蚤亞科的第二筆中生代化石紀錄,研究論文發表在古生物和地質學領域國際期刊《白堊紀研究》(Cretaceous Research)。我們將其命名為:陳睿刺足大花蚤 Spinotoma ruicheni Hsiao & Huang, 2017,屬名語源來自「刺」(Spino-) 和「細身大花蚤屬的字尾」(-toma),意即其密著棘刺的足部表面;種小名則獻名給本研究的幕後功臣——陳睿博士,表彰其協助提供研究材料的貢獻,陳博士任職於中國科學院動物研究所,是研究蚜蟲生態演化的年輕學者。

這塊琥珀化石目前收藏、展示於深圳世紀琥珀博物館。

陳睿刺足大花蚤 Spinotoma ruicheni Hsiao & Huang, 2017,是的緬甸琥珀生物群中第二筆細身大花蚤亞科的化石紀錄,圖/作者提供。

本研究發現增進了我們對史前大花蚤的生物多樣性的認識,此外透過現生大花蚤類群和已知的化石物種間的比較形態學和中生代的古環境學,我們得以對於大花蚤科形態、多樣性演化和古生物學的進行以下推論:

多樣性
Batelka 等人在發表海蒂扇角大花蚤的研究論文中,曾提出大花蚤的物種多樣化始於中生代晚期,我們透過與早前發表的 4 種中生代大花蚤成員的形態比較,不難看出在中生代晚期,大花蚤科的確已具備相當程度的多樣性,我們的發現也印證了 Batelka 等人的論述。

形態演化
在前人的比較形態學研究中曾提出有關大花蚤科的祖先特徵 (祖徵,Plesiomorphy) 及形態演化,認為如現生大花蚤特定類群的縮短翅鞘應是演化自完整覆蓋住腹部的類群,這個演化趨勢為目前已知的形態、分子親緣關係研究所支持,而根據我們對於已知中生代化石大花蚤的形態研究亦驗證此假說。

古生物學
本種為細身大花蚤亞科 (Pelecotominae)的成員,已知現生的細身大花蚤亞科成員會寄生於木棲的甲蟲類群幼蟲,基於外觀形態的相似性以及緬甸琥珀生物群也出土豐富的朽木棲的甲蟲類群,則因此推測本種可能已建立與朽木棲甲蟲的寄生關係,我們並且認為這些寄生性甲蟲的多樣化可能與這些潛在的木棲寄主在白堊紀的多樣性演化相關。

陳睿刺足大花蚤的復原想像圖,本種可能跟本亞科的現生成員一樣會在朽木尋找適合產卵的地方,圖/石探記科學團隊提供。

侏儸五化甲的系統分類
2011 年,中國科學院南京地質古生物研究所王博博士等人發表了一種來自侏儸紀中期的擬步行蟲總科甲蟲——侏儸五化甲 (Wuhua jurassica Wang & Zhang, 2011),研究人員認為本種為一種「似花蚤類」生物,並將其歸劃於科級未定位,而根據我們在這個研究中對其形態與先前發表的媧皇始源大花蚤和現生的鋸角大花蚤 (Trigonodera tokejii (Nomura and Nakane, 1959))比較,我們認為侏儸五化甲很可能屬於大花蚤科的成員。

花蚤類楔形體態的演化
已出土的化石紀錄顯示,最早於侏儸紀晚期已有花蚤科甲蟲的出現,這些花蚤與現生的後裔體態十分近似,很有可能亦以花粉為食,然而牠們當時似乎不太可能以水生的古果屬 (Archaefructus)花粉為食而較有可能與裸子植物關係密切,也就是說現生花蚤體態外形並非一般所認為的是與開花植物共演化而來 [註3],基於花蚤科與大花蚤科的親緣關係以及我們的研究,我們認為現生的大花蚤科之獨特的身體結構亦非與被子植物協同演化的產物,而是直接繼承了侏儸紀時期祖先類群的身體構建。

  • 此文由國立臺灣大學昆蟲學系學士蕭昀撰寫,響應 PanSci 「自己的研究自己寫」,以增進眾人對基礎科學研究的了解。

參考文獻

  1. Hsiao, Y., Yu, Y., Deng, C., Pang, H., 2017b. The first fossil wedge-shaped beetle (Coleoptera, Ripiphoridae) from the middle Jurassic of China. European Journal of Taxonomy 277, 1–13.
  2. Batelka, J., Prokop, J., Engel, M.S. 2016. New ripiphorid beetles in mid-Cretaceous amber from Myanmar (Coleoptera: Ripiphoridae): First Pelecotominae and possible Mesozoic aggregative behaviour in male Ripidiinae. Cretaceous Research 68, 70–78.
  3. Wang, B., Zhang, H. 2011. The oldest Tenebrionoidea (Coleoptera) from the Middle Jurassic of China. Journal of Paleontology 85(2), 266–270.
  4. Hsiao, Y., Huang, C.-L., 2018. Spinotoma ruicheni: A new Late Cretaceous genus and species of wedge-shaped beetle from Burmese amber (Coleoptera, Ripiphoridae, Pelecotominae), Cretaceous Research 82: 29-35. Published Online: 28 October 2017 (doi: 10.1016/j.cretres.2017.10.022).
文章難易度
蕭昀_96
21 篇文章 ・ 12 位粉絲
澳洲國立大學生物學研究院和聯邦科學與工業研究組織─澳洲國立昆蟲標本館聯合培養博士生,國立臺灣大學昆蟲學系學士,中研院臺灣生命大百科(TaiEOL)編輯人員、泛科學專欄作者,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。因為攻讀博士所以持續焦慮中。

0

2
0

文字

分享

0
2
0
種族大爆發!數萬年前的人類大遷徙如何影響我們的社會?——《人類的旅程》
商業周刊
・2022/10/22 ・2852字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

人類如何發展成多元族群?

自從三十萬年前智人在非洲現身,多元化便幫助人類適應非洲各地不同的環境。這期間大部分時候,適應成功漸漸產生更好的獵人和採集者,使食物供給增加,人口明顯上升。

之後每個人可享有的生存空間和自然資源減少,早在六萬至九萬年前的某個時間,智人開始大規模出走非洲大陸,尋找更多肥沃的生存土地。由於這種外移過程有連續性,便自然產生一種相關:定居的地方離非洲越遠,人口多元化就越低。智人離開非洲越遠,其社會的文化、語言、行為、體格多元化程度就越低。這種現象反映著連續始祖效應(serial founder effect)。

什麼是「連續始祖效應」?

假設有個島上,住著五種主要品種的鸚鵡:藍、黃、黑、綠、紅,牠們在島上適應存活的能力相當。當颱風來襲,有幾隻鸚鵡被吹到很遠的荒漠小島。這一子群鸚鵡不太可能涵蓋所有五個品種。假定牠們以紅、黃、藍居多,不久滿布新島上的幼雛將遺傳牠們的毛色。於是新島上形成的鸚鵡群就不及原棲息地的多樣化。要是後來又有很小一群鸚鵡,從第二島移往第三島,這一群的多樣化更不及前二島。所以只要鸚鵡從母島移出的速度快過原島上可能產生突變的速度,則牠們(相繼)移得越遠,就越不多樣。

人類移出非洲也是類似模式。起先有一群人離開非洲,定居在附近肥沃地帶,他們只帶走非洲母體人口多樣化的一部分。等這群最早的移民成長到新環境無法支撐他們再擴大,便會有一群人離開,去尋找別的處女地,定居在更遠的地方,其多元化將更低。人類向非洲以外散布,以致各洲都有人類蹤跡的這段期間,同樣的過程一再重複:人口增加,新群體再移出,去追尋更綠的草地,但多樣化僅及母體人口的一部分。

儘管有移民改變方向,這顯而易見,不過這種移居模式的影響是,離開非洲來到西亞的人群不像原本在非洲的人口那樣多樣化,其後代又繼續向東移往中亞,最後來到大洋洲和美洲,或是向西北移往歐洲,多其樣性也越來越比不上留在原地的人。解剖學上的現代人類,從非洲的搖籃向外擴張,為世界各地文化、語言、行為、形體多元化的程度不同,刻下深刻且不可磨滅的印記。

人類移出非洲對多元化的影響。
虛線箭頭代表移出的大約路徑,小圓圈代表一種假設的社會特質有各種變異。每向外移一次,離開的人只帶走母體人口多元化的一部分。圖/《人類的旅程》

這種與非洲離得越遠、人口整體多元程度就降低,部分反映在較遠的在地民族基因較不多樣化上。根據對二百六十七種不同人口做基因多元化的比較測量,這些人口大都可找出原屬的本土族群和地理上的發源地。結果很明顯,距東非最近的本土族群基因最多樣化。多樣化最低的是中南美洲的本土族群,他們從陸路移出非洲的距離最長。多元化與移出東非的距離成負相關,這種模式不僅出現在各大洲之間,在各洲內部也是如此。

自東非移出距離與地理上本土族群多元化。圖/《人類的旅程》

體質與認知人類學領域提供更多這種證據。研究人體體型的特徵,比方與牙齒特徵、骨盆特徵、產道形狀相關的骨骼架構,以及研究文化特徵,例如不同語言的基本詞語單位(「音素」〔phonemes〕),都證實有源自東非的連續始祖效應存在;同樣是距東非越遠,體形和文化特徵的多樣化越低。

人口多元化表現的形式是多方面的,若要適當探究整體多元化程度對國家經濟繁榮的影響,當然需要比基因學家和人類學家所提供的更廣泛許多的測量標準。此外,這標準也需要獨立於經濟發展的程度之外,以便用於評估多元化對國家財富的因果效應。這會是什麼樣的測量標準呢?

測量人類多樣性的標準是什麼?

測量人口多元化慣用的標準,往往只擷取人口中族裔或語言群體的比例代表。這類標準因此有二大缺點;一是某些族裔和語言群體的關係較密切。由等比例丹麥人和瑞典人組成的社會,或許不如由等比例丹麥人和日本人組成的社會那麼多元。另一缺點是,族裔和語言群體的內部也不盡然完全同質。全由日本人組成的國家與全由丹麥人組成的國家,多元化程度不見得相同。事實上,族裔團體內在的多樣性通常比不同群體的多樣性要大上十倍。

因此要全面測量一國人口的整體多元化,至少應當再多加二個多元化的面向。一是族裔或次民族群體內在的多元化,如美國的愛爾蘭裔和蘇格蘭裔人口。其次是比對任一組族裔或次民族群體之間的多元化程度,例如,比起美國的愛爾蘭裔和墨西哥裔人口,愛爾蘭裔和蘇格蘭裔的文化較為相近。

鑑於移出東非的距離與可觀察特質的多元化之間存在緊密的負相關,這個遷徙距離可用於代表地球上每個地方的歷史多元化程度。我們依據各地人口的祖先與遷徙出非洲的距離有多遠,可以建構推算今日各國人口整體多元化的指數,列入考量的包括 (1) 國內各次群體的祖先人數多寡;(2) 依據各次群體的祖先走出東非時遷徙的距離,來推測其多元化;(3) 每一次群體配對後,由兩方祖先和地理發源地的遷徙距離來推算多元化程度。

這樣用統計學測量來推算多元化水準有二大優點。一是史前遠離非洲有多遠,顯然完全與當今的經濟繁榮水準無關,所以這種測量法可用於估計多元化對生活水準的因果效應。其次是如上文所強調,有越來越多體質與認知人類學領域的證據顯示,遠離非洲的遷徙距離深深影響到許多表現在身體及行為上的特質的多元化;所以我們有把握,用這種測量法推算的多元化類別會產生社會結果。

要是用這種指數測量多元化不精準(採隨機方式進行),原因比方說是未能適當考量各洲的內部移民,則根據統計學理論,我們多半會因此否定、而非確認多元化影響經濟繁榮的假設。也就是說,如果我們犯錯,是因為過於謹慎。

人口特質多元性和能不能賺大錢有關係!?

最後很重要的一點是,我們是針對個別社會的特徵測量多元化。這測量的是某一社會的人口特質有多少不同種類,無論這些特質是什麼,或是不同社會間有什麼差別。因此它不會、也不能用於暗示某些特質比別的特質對經濟成功更有利。反而它可以掌握到某個社會的人口特質多元化,對經濟繁榮有何潛在影響。事實上,把地理與歷史干擾因子納入考量,遠離非洲的遷徙距離本身似乎並未影響全球各地如身高體重等特徵的平均水準。它主要是影響群體中的個人與平均水準的差異。

有了這強有力的測量法可測定每一群人口的整體多樣性,我們終於可以探究數萬年前遠離非洲的大出走,以及它對人類多元化的影響,是否如此源遠流長,以致居然還能左右當前的全球生活水準。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

0

1
0

文字

分享

0
1
0
頭好撞撞追求女生的「獬豸鹿」,和長頸鹿脖子變長有什麼關係?
寒波_96
・2022/08/31 ・2359字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

長頸鹿最顯眼的特色莫過於長脖子。牠們祖先的脖子沒有那麼長,從短頸鹿變成長頸鹿是為什麼呢?一般說法是長脖子有利於覓食,天擇有優勢。然而一篇 2022 年的論文,報告一款長頸鹿的遠古親戚之餘,還主張脖子變長和性擇有關:男生脖子長有利於求偶。此一論點能相信嗎?

長頸鹿男生用脖子互撞,是爭取女生的手段之一。圖/參考資料 1

頭好撞撞向女生求愛!

進入主題以前,先請大家動動腦:分類學中,馬是馬科,人是人科,豬是豬科,牛是牛科,羊是牛科(!),鹿是鹿科,長頸鹿是哪一科?

這個問題很容易答錯,正確答案是:長頸鹿就是長頸鹿科(Giraffidae)。

多數人大概根本不知道有個長頸鹿科,它如今獸口單薄,只剩下住在非洲的長頸鹿、㺢㹢狓兩群。不同人對於長頸鹿有幾個物種見解不一,反正就是一群類似的長頸鹿。㺢㹢狓的知名度很低,許多人是從博客來 Okapi 網站的吉祥物認識牠。㺢㹢狓沒有長脖子,這點與許多長頸鹿科的古代親戚類似。

長頸鹿科及其近親們,古時候的多樣性遠勝現在。獬豸鹿便是其中一員,牠們住在中新世(Miocene)早期, 約莫 1700 萬年前的新疆。多年下來古生物學家在準噶爾盆地蒐集到幾件化石,可以推測獬豸鹿的體型,以及腦補頭部、頸部的狀況。

獬豸鹿男生想像圖。圖/參考資料 3

新發表的論文將其定義為新的物種:Discokeryx xiezhi,屬名和種小名都是新的。屬名 Discokeryx 的英文意思為 round-plated horn,可以翻譯作圓板角;種小名 xiezhi 則來自傳奇上古神獸「獬豸」,本文皆稱之為獬豸鹿,唸作蟹智露

研究者根據化石認為,獬豸鹿的頭部、頸部適應衝撞,頭好撞撞的戰鬥值很高,男牲求偶時可能用衝撞來爭搶女牲。會用腦袋撞來撞去的動物並不罕見,論文分析後主張,獬豸鹿的撞擊能力可謂難波萬,比所有古今的牛、羊、馬、豬都更能撞。

不過接下來的推論乍看有點神奇:脖子長有利同性競爭,於是愈來愈長變成長頸鹿!?

獬豸鹿、長頸鹿,與眾多親戚們的演化關係。圖/參考資料 1

向女生求愛,使得脖子長?

關於這點,其實沒有比較明確的證據。論文的思路是,長頸鹿古早近親們在頭部、頸部變化的花樣不少,堅頭曼們競爭女生的性擇力量,應該是適應的一大影響力。長頸鹿祖先的脖子變長,或許就是為了求偶有優勢。

長頸鹿和獬豸鹿的親戚關係如何?應該沒有直接關係。獬豸鹿住在 1700 萬年前的新疆草地,長頸鹿脖子變長則發生在 500 萬年前的非洲草地,算是上新世(Pliocene)早期。沒有證據支持獬豸鹿是長頸鹿的直系祖先,兩者頸部是獨立演化,適應方向也不一樣。

獬豸鹿和長頸鹿的年代差距非常遠。圖/參考資料 1

然而,論文很努力類比,強調兩者的相似。假如頭、頸適應的主要驅動力是性擇,獬豸鹿超耐撞是性擇所致,那麼長頸鹿脖子超長也有機會是性擇造成。

動物吃進不同的食物,會影響身體構造的成分,能夠由穩定同位素判斷飲食組成。對新疆獬豸鹿的牙齒分析得知,牠們當年應該住在乾燥的草地,也許乾旱到其他大型動物都不太能生存。

現在的長頸鹿也時常住在資源稀缺,不太有牛、羊的棲位。苦行的邊緣路線,或許是長頸鹿及其部分古代親戚的特色。

獬豸鹿生活的生態系想像圖,牠們或許能住在比其他動物更邊緣的棲位。圖/參考資料 2

一項特徵的演變,受到性擇影響之外,也可能涉及天擇。論文的說辭是,長頸鹿脖子變長一開始為性擇影響,尺寸增長有利於獲得女生歡心;脖子變長以後更容易取得資源,也對天擇有利。所以長期看來性擇、天擇兩個方向,都支持脖子延長的趨勢,也衍生出如今的長頸鹿。

不過這件事和獬豸鹿有關係嗎?好像沒有。

長頸鹿的脖子變長,和男牲競爭女牲有關嗎?這題交給各位讀者自行判斷。

延伸閱讀

參考資料

  1. Wang, S. Q., Ye, J., Meng, J., Li, C., Costeur, L., Mennecart, B., … & Deng, T. (2022). Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376(6597), eabl8316.
  2. Strange fossil solves giraffe evolutionary mystery
  3. How the giraffe got its neck: ‘unicorn’ fossil could shed light on puzzle
  4. This ancient giraffe relative head-butted rivals with an ‘amazing sexual weapon’

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

0

2
0

文字

分享

0
2
0
這是真的嗎?傳說級的暴龍之血,引起古生物學家的學術攻防戰!──《 誰讓恐龍有了羽毛? 》
臉譜出版_96
・2022/08/17 ・4514字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

流傳了六千萬年的血液!找到疑似暴龍的血管和細胞

體認到 DNA 不能持續存在個幾千年,讓大家失望不已。也因此,所有那些聲稱找到數百萬年前昆蟲、植物和細菌 DNA 的投稿文章,最後全都被學術期刊拒絕。

千萬年下來,DNA 幾乎無法保存良好,使得古生物學家難以藉此完全破解恐龍的秘密。圖/Pixabay

然而,要是恐龍化石中存在有其他種類的蛋白質呢?好比說骨骼中特定的蛋白質?一九九七年發表了一篇發現恐龍血跡的文章,又為大家帶來新希望。

由瑪麗.史懷哲(Mary Schweitzer)領導的蒙大拿州立大學(Montana State University)的研究團隊表示,他們已經從保存完好的暴龍骨骼中抽取出蛋白質和血液化合物。

若真是如此,這將使我們對恐龍的生理學有更進一步的認識——它們的血紅蛋白結構可能會提供攜氧能力的線索,解決恐龍是否為溫血動物的爭議。

瑪麗.史懷哲因為受到一具保存異常完好的暴龍骨架所啟發,而展開她尋找古代蛋白質的探尋。「就某些方面來看,它幾乎與現代骨骼相同,並沒有受到礦物質的填充,」她說。

外面一層緻密的骨層似乎阻止了水分進入,所以內部的骨骼看來和新鮮的一樣。史懷哲鑑定出這些內部區域的蛋白質和可能的 DNA。她這樣描述當時的興奮之情:

實驗室裡充滿了驚奇的低語聲,因為我注意到血管內有一些我們以前從未注意到的東西:微小的圓形物體,呈半透明的紅色,中間則是黑色的。

然後一位同事過來看了看,大喊道:「你找到紅血球。你找到紅血球了!這看起來就跟一塊現代骨骼一樣。

但是,當然,我無法相信。我問實驗室的技術員:「這骨骼畢竟有六千五百萬年的歷史。紅血球怎麼可能保存那麼久?」

瑪麗.史懷哲的研究團隊可能在暴龍的骨骼中,找到了牠們的血管以及細胞。圖/Science

然後我們對這根可能含有紅血球的骨骼進行測試。骨骼中似乎確實含有血紅素,這是血液中的血紅蛋白分子上負責攜帶氧氣的那部分。

血紅素呈紅色,這也是血液呈紅色的原因,因為這當中富含鐵,在與氧氣結合時就會呈現紅色,這有點類似鐵生鏽時會出現顏色變化的原理。

質疑:這些是恐龍本身的組織,還是外來汙染?

然而,許多其他科學家質疑這些報告,並認為骨骼中富含鐵的痕跡與血液或血液製品無關,可能只是這動物在遭到掩埋很長時間後進入骨骼的鐵質。

在受到許多評論——有些公平,有些可能不公平——後,瑪麗.史懷哲和她的團隊在二〇〇五年又在《科學》雜誌上發表了一篇後續文章,題為「暴龍的軟組織血管和細胞保存」(Soft-tissue vessels and cellular preservation in Tyrannosaurus rex)。

她的團隊溶解掉一些四肢部位堅硬骨骼的磷酸鈣,留下了由狹窄的血管組成的殘留物,其中包含可以擠出的圓形物體。

從圖 A 中可以發現,脫礦的骨骼基質具有彈性,在箭頭處,拉伸後仍然可以恢復,而在圖 C 箭頭處可以看到纖維狀的特徵。圖/Science

脫礦後的骨骼基質是纖維狀的,並保留了一些原始彈性——在一根將近有七千萬年的化石上,這是非常驚人的。

在後來針對相同材料的研究中,史懷哲和她的同事進行了一系列生化測試,試圖證明這些彈性纖維線是由膠原蛋白組成,就像在原始骨骼中那樣。

骨骼通常由兩種主要材料組成:磷灰石礦化針,這是一種磷酸鈣,會嵌入在纖維性的膠原蛋白中。正是這種彈性蛋白質和硬礦物質的結合,賦予活體骨骼有趣的特性,讓骨骼能夠彎曲(在某個角度範圍內),但彎太大還是會脆裂折斷。

在沒有磷灰石晶體的地方,膠原蛋白形成軟骨,這種柔軟的材料讓我們的耳朵和鼻子變硬,也是鯊魚骨骼的主要成分。

不久之後,在二〇〇八年,托馬斯.凱耶(Thomas Kaye)及其同僚將重新解釋所有這些化石發現,指出這全是人為因素所造成的。他們說,這個疑似血管的構造可能是細菌膜,而所謂的紅血球只是黃鐵礦晶體,是一種硫化鐵礦物。

反轉、反轉再反轉,究竟誰比較靠近真相?

瑪麗.史懷哲對這些批評並不買單,到了二〇一五年,她的研究似乎得到了另一個研究團隊的證實,他們表示從八塊白堊紀時代的恐龍骨骼中取得膠原蛋白和紅血球。

然而,到了二〇一七年,又有一篇文章發表,曼徹斯特的麥克.巴克萊(Michael Buckley)及其同事顯示,這些暴龍的膠原蛋白主要是由實驗室汙染物、土壤細菌以及鳥類血紅蛋白和膠原蛋白所組成的。

他們特別指出,那個所謂的恐龍蛋白質與現代鴕鳥的序列相吻合——這是很容易出錯的地方,若是在分析化石材料的實驗室中,也處理這些現代生物的樣本,就會出現這樣的錯誤。

然後,情況變得比較明朗。在二〇一八年的一篇論文中,耶魯大學的博士生亞斯米娜.偉曼恩(Jasmina Wiemann)帶領的一個小組再次研究了那些去除所有礦物質後的化石骨骼中的血管和其他褐色物質。

她進行了一連串複雜的測試,發現這些血管和組織都是真的,但其組成已經不是最初的蛋白質,可能只有膠原蛋白還保持原樣。

其他的成分都已腐爛,轉變成另一種形式,稱為N-雜環聚合物(N-heterocyclic polymers)——所以事實上,瑪麗.史懷哲是對的,她發現的確實是血管、皮膚細胞和神經末梢的一部分,只是在化石化的過程中,蛋白質發生本質上的轉變。

原始的膠原蛋白有可能被保存下來,但處理時必須格外小心,確保它沒有受到汙染。在一九九二年,荷蘭研究人員傑哈德.麥瑟(Gerard Muyzer)從兩隻白堊紀恐龍的骨骼中找到另一種骨蛋白,稱為骨鈣素(osteocalcin)。

有可能是骨鈣素(osteocalcin)讓恐龍骨頭組織可以逃離腐化的命運。圖/Wikipedia

骨鈣素存在於所有脊椎動物的骨骼中,其作用類似於荷爾蒙,可以刺激骨骼修復以及其他生理功能。骨鈣素是一種堅韌的蛋白質,可以非常牢固地與骨礦物質結合,正是因為如此,似乎可以逃過腐化的命運。

它也是一種相對較小的蛋白質,由大約五十個胺基酸組成。在二〇〇二年,曾經為一隻五萬五千年前的野牛化石的骨鈣素分子進行完整定序。也許有一天,我們也可以幫恐龍的骨鈣素定序。

雌、雄恐龍長得到底一不一樣?

長久以來古生物學家一直認為,恐龍具有雌雄二形性,也就是兩性的外觀不同,至少有些種類是如此,就如同之前在第四章中看到的。

在過去,有人曾認為晚白堊世長角的角龍類和長冠的鴨龍類這些植食性動物是如此,牠們的骨架組成大同小異,只是頭上頂著的冠或角不同。

但若根據這種說法,奇怪的案例就出現了:所有的雄性會在一個時期都生活在一個地方,而所有的雌性,也就是頭骨稍微有些差異的個體,則碰巧在另一個時期生活在另一個地方。

這個例子讓假設完全無法成立!

然而,近來恐龍的雌雄二型性再度成為焦點,因為現在我們可以辨識一些羽毛顏色和圖案細節。

有許多動物的雄性、雌性具有非常迥異的外表,恐龍是否也有類似的現象?圖/Wikipedia

現在普遍認為,許多恐龍的羽毛可能是用於展示,而條紋和頭冠則暗示著雄性在交配前的求偶展示,就跟多數鳥類一樣,而這正是性擇在恐龍演化中扮演的關鍵作用,如之前在第四章所提到的。

髓質骨,也許是破解恐龍性別的關鍵!

最棒的是,我們或許能夠根據這些明確的證據來辨別某些恐龍的性別。

大多數的雌鳥都長有一種特殊的骨骼叫做髓質骨(medullary bone),這是一種填充髓腔的海綿狀骨骼,會出現在某些肢體骨骼的核心。

在現代鳥類中,最初是一九三四年在鴿子身上注意到,然後在麻雀、鴨子和雞的骨架中也有觀察到。鳥的身體可以很快生成髓質骨,也可以很快地將其拆解回收,算是一種鈣質的儲藏庫,在需要形成蛋殼時可以快速釋出原料。

後來的研究發現,所有的現代鳥類都是如此。

生理實驗顯示,在雌鳥開始產卵時,髓質骨會在整套骨架的許多骨骼核心累積,然後隨著鈣進入發育中的蛋殼而減少。髓質骨的發育和轉移會隨著季節而出現週期性的變化,主要是受到雌激素(Oestrogen)和其他與繁殖週期相關的荷爾蒙所控制。

二〇〇五年,瑪麗.史懷哲首次在現代鳥類之外的暴龍身上發現髓質骨。從那時起,也陸續在其他獸腳類恐龍和鳥臀目中的腱龍(見隔頁)和難捕龍(Dysalotosaurus),以及已滅絕的孔子鳥和企鵝(Pinguinis)中發現。

由位於開普敦的南非博物館的阿努蘇亞.欽薩米-圖蘭(Anusuya Chinsamy-Turan)及其同僚所發表的一篇關於孔子鳥的研究特別有說服力,因為他們證明鑑定出髓質骨的化石都是雌性標本(參見下圖)。

白色箭頭處,即為雌孔子鳥的髓骨。圖/臉譜出版

在中國博物館蒐集到的數千個烏鴉大小的孔子鳥標本中,已經確定出雌雄兩性的形態。

有一個非常經典的標本是在同一塊石板上同時有雄鳥雌鳥——推測是雄鳥的那隻,長有旗桿般的長尾羽,而假設是雌鳥的那隻則沒有。

因此,就跟現代鳥類一樣,雄性長有荒謬的裝飾品,以便向較為敏感但外表單調的雌性炫耀,試圖展現牠強韌的特性,暗示牠將會是一個好父親。

欽薩米-圖蘭及其同僚在一個顯微切片中發現了位於內腔的髓質骨,其海綿狀的骨組織與一般較為規則和緻密的骨骼完全不同。髓質骨只有在雌性身上發現,從來沒有在雄性身上發現——雖然也不是所有的雌性都有,因為牠們死時並非都處於繁殖季。

不過,在其他例子中對於髓質骨的功能則還有爭議,比方說有研究指出在暴龍和異特龍等大型恐龍身上也有發現髓質骨。他們提出另一種解釋,認為些大型恐龍中之所以有海綿骨,可能與生長突增(growth spurt)有關。

有些體形較大的恐龍,生長速度非常快,幾個月內,體重可增加數百公斤,因此會需要快速取得和調動鈣質,我們將在第六章談這類恐龍。

在現生鳥類,甚至是化石鳥類中,髓質骨的存在是為了繁殖,這一點毋庸置疑,但只有在小型恐龍身上發現這類骨骼,也許是因為產卵對牠們來說是一項巨大工程,就像對今天的鳥類一樣。

從這一對孔子鳥的化石可以看見明顯的雌雄二型性。圖/臉譜出版

深入研究恐龍骨骼,認識牠們的生理機能和交配行為是一回事,但我們到底能不能一如本章開頭的主題所問的,設計出一隻活生生的恐龍呢?

——本文摘自《誰讓恐龍有了羽毛? 》,2022 年 7 月,臉譜出版

臉譜出版_96
67 篇文章 ・ 244 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。