0

0
0

文字

分享

0
0
0

p 值的陷阱(下):「摘櫻桃」問題

林澤民_96
・2017/01/07 ・8456字 ・閱讀時間約 17 分鐘 ・SR值 545 ・八年級

編按:本文係林澤民老師在2016年中進行的相關系列演講之一的逐字稿修訂版,本場次為2016/6/6在政大社科院的演講,題目為《看電影學統計:p 值的陷阱》。原文刊於《社會科學論叢》2016年10月第十卷第二期。

此篇文章為下篇,建議先收看上篇文章:〈 p 值的陷阱(上):p值是什麼?又不是什麼?

Source:SONY DSC
Source:Vicente Villamón

「摘櫻桃」問題

再來我們講到「摘櫻桃」問題,如同剛剛所提到,研究假設的先驗機率是如此重要,我們要如何去判定?要怎麼知道它是多少?我們必須要做文獻的分析、要建構我們的理論,在這種情況之下,會出現摘櫻桃的問題。這裡就是要呈現給大家看,譬如我們作 20 個統計檢定,從作第一個開始,本來有一個 model,但是 p 值不顯著,我們就改一下model,加一個變數、減一個變數,或是把一個變數平方,或是把一個變數取 log,或者把樣本除去一些,增加一些,這樣慢慢去試驗,最後終於得到一個顯著的結果了!但這裡告訴你,做了 20 個這樣的檢定,我們以為每一個檢定的 Type I error 控制在 0.05,可是 20 個裡面最少有一個顯著的或然率是多少?是 0.64。(圖八)

f_19859859_1
圖八

為了讓大家能夠進一步了解這個問題,再給大家看一部電影,這部電影是《班傑明的奇幻旅程》。

讓大家看這部電影,我們可以注意到,這部電影所講的,跟上一部《玉蘭花》很類似,也在討論是這樣發生車禍到底是 by accident 還是 by design。它的議論應該是:這種車禍的發生,其實有一連串的因果鏈,只要這因果鏈其中有一個環節稍微不一樣、或是沒有發生的話,可能車禍就不會發生。因此它的敘述者暗示說其實是 by design,而不是 by accident。然而現在要跟大家說明,這個結論是錯的。電影要說明這是 by design 而不是 by accident 的話,是完全錯誤的。為什麼?大家只要想想看,我們政大門前有條交通繁忙的馬路,你一邊跳舞一邊過街,看會不會被車撞上,不是極有可能會嗎?為什麼?因為車禍是 by accident,它是說被某一輛特定車子撞到的機率很低,譬如是 0.05,可是如果有 20 輛車子經過的話,被其中最少一輛撞到的機率就會很大,剛才已經算給各位看,所以電影是錯誤的。

類似這種問題,其實我們日常生活中所在多有。再以大樂透為例:你買了一注大樂透,你中頭獎的機率是 1 / 13,980,000。如果你自己中獎,你也許會說這是命運,不是機率,因為中獎的機率近乎 0。但全台灣賣了5,000,000 注的大樂透,最少有一注中頭獎的機率其實是 0.30。你不能舉出有人中獎的事實就否定大樂透開獎的隨機機制。

-----廣告,請繼續往下閱讀-----

這就是 cherry-picking,只抓住發生的事件,就來說因為有這麼多因果鏈,如果稍微有一點不一樣,這種事情就不會發生,這是錯誤的,因為它有很多其他的可能性同時存在。現在在統計學裡面,很多人很不在意這個問題,甚至主張這種問題不存在,而其實它可能比 p 值的誤用還要嚴重。這種問題叫做多重假說檢定(multiple hypothesis test)、多重比較(multiple comparison),我有同事對這種問題的反應十分強烈,主張所有的研究都必須要事先登記,什麼叫做事先登記?並非申請研究經費、寫一個研究計畫這麼簡單,所謂事先登記(pre-registration)的觀念,就是在做任何研究之前,研究者必須要把研究計畫 post 在網站上,而且 post 上之後就不能改,現在其實已經有很多這種網站存在,將來研究者發表文章,如果跟預先登記的研究設計不一樣,其他人就可以對你發表的結果提出質疑。

只從單一結果去回推的因果論其實是不正確的,因為事情在發生時其實是多重可能性並存。圖/Marcus Pink @ Flickr
只從單一結果去回推的因果論其實是不正確的,因為它有很多其他的可能性同時存在。圖/Marcus Pink @ Flickr

小結:在多重假說檢定的情況下,即使 H為真,「至少有一 p 值檢定顯著」的機率常會甚大於單一 p 值檢定的顯著水平 α。以「摘櫻桃」的方式只報告顯著的檢定結果常會導致錯誤的統計推論。

結語

圖九是 ASA 建議取代 p 值的其它途徑,在此沒有時間細講,大致上是要用其它方法,比如貝式統計學。(圖九)這邊提到的很多方法都跟貝式統計學有關係。我們現場有貝式統計學的專家,他們懂得怎麼用貝式統計學來分析資料。但對於還沒有學到貝式統計學的朋友,這邊 ASA 特別提到的 confidence intervals(信心區間)是傳統統計學的方法。ASA 似乎認為使用信心區間比使用 p 值檢定要來得好,但是信心區間其實是連續性的 p 值檢定,如果只是看看虛無假設的理論值有沒有在信心區間之內,則檢定的結果跟 p 值檢定是一樣的。但如果把信心區間畫出來,至少有一個好處,它會清楚呈現出效應的大小,讓你不但能看出檢定結果的統計顯著性(statistical significance),也能看出估計值的實質顯著性或重要性(substantive significance)。我們使用信心區間,總比只用一顆星兩顆星來標明統計顯著性要好。

f_19859875_1
圖九

如果一定要用幾顆星的話,大家就不要再用 α = 0.10 了;p <0.10  就不要再加星星了。我知道 American Journal of Political Science(AJPS) 已經不接受 α = 0.10 這個顯著水準的統計檢定了;不管是單尾檢定或是雙尾檢定,用 α = 0.10 已經不被接受了。0.05 還可以,最好能用 0.01,審稿人對你較難有所批評。

但是最重要的,如果我們不得不用傳統的統計方法,我們必須要增強我們的理論論述和脈絡描述,因為增強理論論述和脈絡描述,即會增強研究假設的先驗機率。當研究假設的先驗機率比較高時,其後驗機率–偽陽性的反機率–就會比較低。這好比你健康檢查某種疾病的篩檢出現陽性時,好的醫生會從你的性別、年齡、生活習慣、飲食作息、家庭病史、乃至於居住環境等脈絡來判斷你是否有充分的病因,以之來詮釋篩檢的陽性結果。這其實就是貝氏更新的道理。

-----廣告,請繼續往下閱讀-----

我讀這些文獻後的想法是:統計學很快就會有很重大的改變,傳統的作法、用 p 值來作統計檢定的作法,大概再過幾年,就不容易再存在。所以大家必須要應變,這也是我在回國來,希望能夠提醒大家注意的一個問題。

Q&A 時間

source:Marcus Ramberg
source:Marcus Ramberg

發問1

林老師您好,謝謝您今天很精彩的演講,也很謝謝上禮拜六參加計劃時,您給我們的文章有很大的啟發與提升。今天聽了這個演講以後,我覺得我們對於 p-value 的使用可能要有心理準備,未來就算不是被全部淘汰,大部分也要被丟到另外一邊去。我在想的一個問題是,因為老師提到使用 confidence intervals,我們在寫作時,有一個習慣是會比較傾向去解釋那些在 p-value 上顯著的變數,如果說未來使用 confidence intervals 的話,我們是不是應該在文章裡面,每一個變數都要去解釋它對 dependent variable 的重要性?或是說應該怎樣去作結果的討論以及處理?謝謝!

林澤民:我想你的自變數應該也有所謂的解釋變項與控制變項吧。我覺得如果控制變項不是麼重要的話,也許就不用太費勁去討論,就著重在解釋變項。解釋變項就是不管作傳統的統計顯著或不顯著,都要加以討論。不只是討論統計的顯著性,更要討論實質的顯著性,而實質的顯著性或重要性是比較能從 confidence intervals 看出來的。其實 p 值的問題是兩面刃,說不定對我們也有好處,就是將來得到不顯著的結果,說不定都可以 publish,都可以呈現在你的論文裡面,而不用怕被人家說:明明就不顯著為什麼還要報告。

發問2

林老師您好,我是經濟系的學生,謝謝林老師今天很精彩的說明,這邊至少有兩個點想跟林老師請教,以及跟大家分享。第一個就是如您剛才所說,我們在作實證研究的時候,不管是我們自己或是長期的訓練,或是目前的期刊的要求,關切的都比較是顯著的結果,所以過去在經濟學界也有對這方面的討論,談到為什麼要去關切那些不顯著的結果;同樣的道理,那些不顯著的結果要被期刊接受的機會也是非常非常低。你唯一可以被接受的理由大概就是,我們看到這個人所作的東西,以後就不要再作了,大概就是樣子。我第一點要說的是,我們目前有這樣的困境。您剛提到一個很好的論點,未來也許大家會有一個共識,就是不顯著的結果反而是更重要的。

-----廣告,請繼續往下閱讀-----

我的第二點是一個問題:您剛剛提到,確實在醫學或自然科學部分,要去找到一些理論上的基礎,可能相對來講比較容易。在社會科學裡面,如果要去找到一些所謂的因果關係,或是比較扎實的理論,可能比較困難,因為人的行為無法像自然科學的實驗室般重複去作,且控制到所有條件都一樣。針對此部分,您剛認為要加強理論的論述,好讓 prior 來的比較 solid 一點,就社會科學部分不知道有沒有更好的一些方法,或至少不會差自然科學太多?這部分確實對我們社會科學的人來講比較困擾一點。

林澤民:我先從第二個問題來回答。我不敢說整個社會科學啦,但在政治學界大概很多人會跟你說:你可能要用賽局理論。

美國政治學在過去十幾年來有一個概念叫作 EITM-Empirical Implications for Theoretical Models。名稱有點奇怪,但它的用意是把統計分析跟理論結合,講 EITM 的人特別強調的就是形式理論,特別是賽局理論。就是作一些對人性的基本假設,然後用賽局理論的數學分法去 deduce,用邏輯去導出一些結果出來,然後再把這些結果用統計方法加以檢定。這在政治學過去十幾年來,已經變成一個很普及的概念。

這有它的好處,就是在形式理論部分,只要基本假設大家能接受,它的邏輯都是沒有爭議的。嚴格來講,形式理論只要大家接受你的假設和邏輯推演,就要接受你的結果,用統計來檢定結果是多餘的。但是我們知道,比如假設行為者是理性的,然而真實的人不一定理性,所以經驗檢定還是重要的。EITM 用形式理論來增強理論的先驗機率,我想這是很不錯的。

-----廣告,請繼續往下閱讀-----
在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr
在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr

你前面第一點提到關於不顯著的結果,當然我也不是說將來學術期刊會大量接受不顯著的檢定結果,我想也不至於,可能只是要求你把這些不顯著的結果都 post 在網頁上;然而對於教授升等,這些作品算不算也不一定,但是我想某種程度上這是合理的預期,一旦不需要使用幾顆星的話,不顯著的結果也可以放進文章裡去,期刊會從整篇文章的研究設計、立論、方法、和結果,來衡量決定到底能不能發表,而不會斤斤計較是一顆星、兩顆星,還是沒星星,所以我對這點倒是有點樂觀。其實,現在已經有很多期刊採取「預約接受刊登」(pre-acceptance)的編輯政策,也就是審查你的研究計劃就可以決定要刊登你計劃執行後的完稿,條件是不論經驗資料支持不支持你的研究假設,完稿都不得改變當初的研究設計,包括 model specification,這就是說不顯著的結果也要刊登了。

其實可以跟大家預告一下,八月四日在中央研究院政治學研究所,為了慶祝所慶,有一個學術討論會。討論會的主題是「甚麼是研究發現」?引言人有朱雲漢、吳玉山兩位院士跟我三個人。我的任務就是報告 p-value 的問題。傳統來講,統計上顯著的結果才叫做 findings,不顯著的結果是 non-findings,但是這觀念可能要有所改變了。這等到八月四日再專門來講。

發問3

謝謝林老師很深入淺出的演講,之前在上統計課的時候,雖然有講到 p-value 的問題,但每次在上大學部課程時,我常常都沒辦法把這一塊講得這麼清楚。在我還是研究生的時候,我們就有很多這方面的討論,而這幾年這問題特別地被突顯,我認為很大的原因,大概是電腦技術越來越好、作 testing 的困擾已經越來越少;另一方面,如果你相信 Bayesian 的話,你應該相信所有的 parameters 都該是 probability term,而不是 deterministic term,說它是顯著還是不顯著。我也有一個問題想請教林老師,您如今在基礎統計的教學裡面,對 p-value 是用傳統 frequentist 的講法,還是像現在等於把它推翻?因為我常有這樣的困擾,就是在初級的課用 frequentist 的方式講,然後到了進階的課,再拿 Bayesian 的 approach 去推翻自己原本以前講的。我不知道林老師您目前在授課時,是用什麼樣的方式?特別是針對 frequentist 的邏輯。

林澤民:我想你對 p 值問題的了解應該比我更早。我是這幾年來才慢慢地逐步了解這個問題。在教學上要採取立即的改變,其實很不容易,我完全了解。我們有一個同事後來就在抱怨,ASA 為什麼要發表這個東西?他說現在所有的journal articles,還有教材、教科書,全部-至少百分之九十幾-都是傳統的統計學,你怎麼來教大學生新的東西?所以這是很困難的。今天我在這裡演講,如果有一點點是我自己觀察來的結果,而不是完全從文獻上得到的,我想是關於 prior-HA 的 prior-怎樣去影響到偽陽性的反機率,這我覺得很重要。

-----廣告,請繼續往下閱讀-----

我目前教學仍是會用傳統方法,畢竟要把一本教科書重新編輯、作講義,是很大的工程。此外,我自己跟你不一樣,我是 frequentist,你來教 Bayesian 比我容易多了。我以前會放電影,跟學生講 p 值是什麼。我現在也放電影,跟學生講 p 值有什麼問題,讓他們了解。然後我會對他們說,在還沒學習貝式統計學之前,要比較強調 prior。也就是你用傳統的統計方法作研究,如果研究假設沒有很高的 prior 的話,也許你就不要作了。

發問(接續):我只是有時候會有點精神錯亂,之前跟學生講過的東西,在比較進階的課程時就要把它推翻掉。

林澤民:在座如果有老師教統計學,請你不要說:林老師今天講的就代表我上課講的都錯了。學生也不要說我上課學的都錯了。不是這麼一回事,這不是我的用意。因為 p 值本身它並沒有錯,錯的是大家對它的誤解誤用。至於傳統的教學方法要怎麼改,我們要慢慢試,但是我們要了解這個問題的存在。我自己到最近教學還是用傳統方法,如果今天請我的學生來聽我演講,他們會說:老師你以前教的都錯了。但事實上,不只是我們教書的,有多少科學、商業或政策上的決定,都是奠基於 p 值檢定的結果之上,我們能說他們都錯了嗎?我想不能說他們都是錯的,可是我們要改變。

發問4

林老師好,我是理學院資科系的老師。非常謝謝林老師,很高興今天上老師的課。關於剛剛幾位老師的討論,我覺得在我們資科系,很多人的直覺,一個方法要嘛是對、要嘛是錯。你們搞機率的卻是:它可能百分之八十對、百分之二十錯。我覺得應該講清楚的是,就 prior 來講,只要 prior 夠強,過去 p-value 的方法大概是對的。這應該有range,大部分問題,只要 prior 在 range 裡面,或許 p-value 的方法是相當可靠的。我不會推翻過去的教學方法,說一切都是錯的,其實沒有麼嚴重。在大部分的問題裡面,過去的方法也許是可用的,只是今天我們面對一些方法,單獨的 p-value 並不是麼可靠,也就是一個漸進式的改變,這樣我們不會打自己嘴巴。

-----廣告,請繼續往下閱讀-----
大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr
大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr

林澤民:對,我完全同意。這就是為什麼我做了這三個圖表,可以看到雖然影響偽陽性反機率的因素包括 prior 和 power,但其實主要是 prior。即使 power 低到 0.50,只要 prior 也有 0.50,偽陽性的反機率也不過是 0.09。如果你願意用 0.10 的顯著水準,0.09 還是顯著的!要給一個可接受的 range,我覺得 prior 大於 0.50 的話,其實都還好。最怕的就是 prior 很低很低,像 ESP 這種研究假設。這也是為什麼在 p-value 問題的討論上,那一篇知名心理學家對 ESP 作的研究會被拿出來討論,因為它的 prior 幾乎是零,但是這只能夠很粗略的估計。

發問5

老師,這邊有一個小問題是:假設現在有十篇從舊到新的文章,它們的先驗機率都不太一樣,我如果要寫一篇文章,我要用最新一篇的先驗嗎?還是由自己發展出來、自己認定?

林澤民:當然你說先驗機率不太一樣,它為什麼會不一樣?是因為理論根本不一樣嗎?還是說因為時間的關係,大家有越來越多的研究發表,先驗機率就會逐步改變?如果已經有一個文獻,通常是建議你要作後設研究,叫 meta-analysis,就是把過去發表的文章統一起來作一個研究。但坦白說我個人也沒有作過這種 meta-analysis,可能可以在這方面的文獻去看一下。Eric,你可以就 meta-analysis 這點再作補充?

俞振華:嘗試把各種不同的 model 的係數,最後統整,變成有點類似老師您剛提的,試很多的 model 的 specification,然後組成一個結果。

-----廣告,請繼續往下閱讀-----

林澤民:對,我讀的這些 p-value 的文獻裡面,其實有些文章就是作 meta-analysis。

發問6

我有兩個關於寫作的問題,因為從老師的演講得到非常多心得。其中一個問題是,如果能強調理論先驗機率的強度,老師剛有提到用 EITM 看能不能夠結合形式理論的一些邏輯去增強強度,此外,我在思考是否有可能,至少就我自己在寫作時,會提出一些案例,然後再稍微說明,我有些案例,當然這些案例可證的是少數,因為全世界有一百多個國家,我們只有一兩個案例而已,說服力有限,但多多少少還是有些用處。我在想這樣作是否 Okay?這是為了提升理論先驗機率的說服力,而提出一些案例來作討論。

只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr
只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr

第二,剛剛老師提到有關 non-findings,這些發現,相信以後應該越來越多人至少在文中會提到,可能一段、或幾句話。就老師的想法來說,要提是要怎麼提?是跟目前為止像跟大家講的一樣,要提的話就只能說,結果顯示並不是 statistically significant,就這樣子很平鋪直敘的描述?還是要稍微把重點放在跟理論的連結,即便結果沒有很顯著,但也不代表我的理論是錯的。我不曉得能不能這樣講,也許不行,因為太武斷。只是不曉得未來大家在強調沒有統計顯著水準的結果時,是要怎麼表達?是要平鋪直敘地講,還是要有些焦點?有些要強調、有些不一樣?

林澤民:我想先講第二個問題,而其實這在 Bayesian 根本就不是問題,Bayesian 就把 posterior distributions 畫出來就好,你根本也不需要去提是否顯著,因為「顯著」的概念本來就是 frequentist 的概念,它不是 Bayesian 的概念。所以要是你看過一些 Bayesian 的文章,你會看到它畫很多圖,每個圖都很小,一小格就一個圖,然後圖就畫上 posterior distributions,甚至連 credible intervals 也不一定要畫出。

俞振華:但是為了要跟 frequentist 對話,現在還是會有 95 % 的 credible intervals。

林澤民:對,不過需要 95 % 嗎?因為我最近寫一篇文章,合作者說 68 % 就可以。所以我想可能就不需要去談什麼顯著不顯著,你就把圖畫出來就好。你若不是 Bayesian,就用 confidence intervals,然後你去畫圖,每一個變數的係數你就把 confidence intervals 畫出來。至於 0 有沒有在 confidence intervals 裡面,我想不必然是唯一的重要標準,當然就實際情況來說,仍要看你的 reviewers 有沒有接受你的結果。我必須要強調,在網路上你還是可以找到一些文章,它們要替 p-value 辯護。要是碰到這樣的評論者,可能就必須要小心。

你第一個問題是說,提出實質案例而不一定是理論,我覺得也可以,我個人會接受,因為所謂文獻,除了理論之外,還有這種實質的知識、地方性的知識。我個人認為這些知識可以幫助我們加強 prior,特別是當這些案例能夠增加我們了解自己研究假設的脈絡時。ASA 的聲明特別提到脈絡(context)的重要性,我剛剛也有提到醫生詮釋陽性反應時,通常要參考病人所處的脈絡。但是我必須要說,我今天特別強調 prior 的重要性,我不知道在座是否有其他學者可以肯定我這一點,我覺得我個人強調 prior,可能與文獻上的這些在講 p-value 的危險性的 articles 相較時,我強調的可能比較多一點。我不能保證所有的統計學者都會同意我的看法,所以要是碰到我來評審你的文章就好了。但是我希望我講的還是有點說服力吧?要是你研究假設的 prior 夠強,可能 p-value 的問題就不是這麼大。

發問7

聽了很多同仁的問題,還有老師的回答以後,我這邊另外的問題是,因為在一開始,老師提到一個期刊-Basic and Applied Social Psychology,也講了 ASA 在今年提出的聲明,我想問,ASA 它的官方期刊─ JASA,是否已經有接受,或是應該說拒絕這種只報 p-value 的文章?還是說他們政策現在是做一個調整,同時都接受兩種?

林澤民:很抱歉,JASA 的文章我不是經常在看,我不能回答你的問題。但是我剛剛已經講了,BASP 在他們政策制定之後,ASA 有一個回應,不是那個 official statement,是在發表 official statement 之前的一個回應。那個回應只說 ASA 正在籌擬一個 official statement。而最後這 official statement 其實跟 BASP 的決定是不一樣的。因為 ASA 的 official statement,第一點在說明 p-value 是什麼,它並沒有說 p-value 錯誤,只是把 p-value 的正確意義講出來。換句話說,只要是使用正確的意義,p-value 並沒有問題,只是不要去誤用它。不要只是著重在統計顯著性,因為 model 對錯的機率跟 p-value 不一樣,要使用 p-value 作檢定,要把它跟 α 來做比較,所以問題不只是 p-value,而是 α。界定了 α 之後,才知道結果是不是顯著。當得到一個顯著的結果以後,必須再來衡量偽陽性反機率的問題,也就是 model 後設機率的問題,這就不是 p-value 可以告訴你的。

本文《看電影學統計:p 值的陷阱》轉載自 Tse-min Lin 的部落格

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
看電影學統計:「多重宇宙」與統計學「隨機變異」的概念
林澤民_96
・2023/03/15 ・2854字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「多重宇宙」是我教統計時常用到的名詞,我用它來解釋隨機變異(stochastic variation)的概念:

例如民調抽得一個樣本,此樣本的受訪者固然是一群特定人士,但理論上我們可以抽出許多許多樣本,這些樣本之間雖然會有隨機變異,但樣本彼此的宏觀性質仍會相近。這些不同的隨機樣本,可以以「多重宇宙」一詞來形容。即使事實上只有一個樣本(一個宇宙),我們可以想像在多重宇宙的每個宇宙裡,都有一個微觀上隨機變異的樣本存在。

一個樣本(一個宇宙),在多重宇宙裡,每個宇宙都有一個微觀上隨機變異的樣本存在。 圖/IMDb

什麼是隨機樣本?

其實,數理統計學中「隨機樣本」(random sample)的概念指的是「一組獨立且同一分布的隨機變數」(a set of independently and identically distributed random variables)

在這個定義之下,樣本的每一個單位(資料點)都不是固定不變的數值,而是一個依循某機率分布的隨機變數。「隨機樣本」的要求是樣本所有的 N 個單位不但要互相獨立,而且要依循同一的機率分布。

我們可以想像我們平常所謂「一個樣本」的 N 個觀察值,每一個觀察值背後都有一個產生這個數值的隨機變數,也可以說所謂「一個樣本」其實只是這「一組獨立且同一分布的隨機變數」的一個「實現」(realization)。那麼,不同的樣本就是這「一組獨立且同一分布的隨機變數」的不同「實現」。這樣了解之下的不同樣本、不同「實現」,我喜歡把它們稱為「多重宇宙」。

-----廣告,請繼續往下閱讀-----

多重宇宙中的隨機變異,是我們在分析一個樣本的資料時必須作統計推論的原因。

比如我們分析本屆所有 113 位立委的議事行為,既然立委一共只有 113 人,我們分析的對象不就是立委的母體嗎?那是不是就不必做統計推論?

不是!原因是我們仍然可以想像有多重宇宙存在,每個宇宙都有 113 位立委,而同一位立委在不同的宇宙裡其議事行為會有隨機變異。正是因為這隨機變異的緣故,我們即使分析的是所謂「母體」,我們仍然要做統計推論。

圖/IMDb

「多重宇宙」的概念可以說就是「假如我們可以重來」的反事實思想實驗。被分析的單位不是在時間中重來一次,而是在多重宇宙的空間中展現「假如我們可以重來」的隨機變異的可能性。

名為 Monday 的這集 X 檔案電視劇中,主角的夢境不斷重複,每次夢境的結構大致類似,但細節卻有所不同,這正是「多重宇宙—隨機變異」概念的戲劇化。

-----廣告,請繼續往下閱讀-----

【媽的多重宇宙】(Everything Everywhere All at Once)也是。

「看,這是你的宇宙,一個漂浮在存在宇宙泡沫中的泡泡。周圍的每個氣泡都有細微的變化。但你離你的宇宙越遠,差異就越大。」——【媽的多重宇宙】對白

這是說:變異程度越小的是離你越近的宇宙,程度越大的是離你越遠的宇宙。這裡所謂變異的程度,在統計學裡可以用誤差機率分布的標準差來衡量。

什麼是隨機變異?

關於「隨機變異」這個概念,我最喜歡的例子是研究所入學申請的評審。

例如有 120 人申請入學,我詳細閱讀每人投遞的申請資料(包括性別、年齡等個人特質還有 SOP、大學成績單、GRE 分數、推薦信等),然後打一個 Y=0~100 的分數。全部評閱完畢,我便得到一份 N=120 的資料。這個資料包括了所有的申請者,那麼它是樣本呢?還是母體?

-----廣告,請繼續往下閱讀-----

如果我要分析我自己評分的決定因素,我會把分數 Y 回歸到性別、年齡等個人特質以及資料中可以量化的變數,例如大學成績平均分數(GPA)和 GRE 分數。跑這個迴歸時,需不需要做統計推論,看迴歸係數是不是有統計的顯著性?

我的看法是這份 N=120 的資料是樣本而不是母體,做迴歸分析當然要做統計推論。

那麼我資料的母體是什麼?

迴歸分析資料的母體其實是所謂「母體迴歸函數」(population regression function),也就是通常所說的「資料產生過程」(data generating process, DGP)。

這個 DGP 就是我在評閱每份資料時腦海中的思考機制,它考量了許多量化和質化的變數,賦予不同的權重,然後加總起來產生 Y。

分析資料的母體,也就是常說的「資料產生過程」。 圖/envato.elements

量化變數的權重就是母體迴歸函數的係數,質化變數則是母體迴歸函數的係數的誤差項。如果有很多質化變數攏總納入誤差項,我們通常可以根據中央極限定理,假設誤差項是呈現常態分布的隨機變數。這個誤差項就是「隨機變異」的來源。

評審入學申請,我通常只把所有資料評閱一次。這一次評審結果,會有幾家歡樂幾家愁,這便構成了一個「宇宙」。如果我第二天又把所有 120 份資料重新評分一遍,得到第二個樣本。因為我腦中的「資料產生過程」包括隨機變數,這個新樣本保證跟第一個樣本會有差異。用白話說:我的評分機制不精確,我自己甚至不知道我給每個量化變數多少權重,而且第二次評閱所用的權重也會跟第一次不盡相同,更不用說質化變數如何影響我的評分了。

-----廣告,請繼續往下閱讀-----

這第二個樣本,申請者的排比不會跟第一個樣本一樣,雖然也是幾家歡樂幾家愁,歡樂與愁悶的人也可能不一樣。這是第二個宇宙。依此類推,我們可以想像同樣的120位申請者,因為我「資料產生過程」的隨機變異,活在多重宇宙裡。

這些宇宙有的差異不大,根據【媽的多重宇宙】的說法,它們的泡泡互相之間的距離就較近,差異較大的宇宙,距離就較遠。如果申請者可以像電影所述那樣做宇宙跳躍,他們會看到自己在不同宇宙裡的命運。

我擔任德州大學政府系的研究部主任時,常耽心有申請者拿我們入學評審委員的評分資料去做迴歸分析。如果分析結果顯示種族、性別等變數有統計顯著性,說不定會被拿去控告我違反所謂「平權行動」(affirmative action)的相關法律。如果沒有顯著性,我就不耽心了。

多重宇宙之間會不會有「蝴蝶效應」?也就是宇宙跳躍時,隨機變異產生的微小差異,會不會造成新舊宇宙生命路徑的決然不同?

-----廣告,請繼續往下閱讀-----

在【媽的多重宇宙】中,伊芙琳只要當初做了一個不同的決定,以後的生命便可能跟現世(home universe)有很不一樣的命運。這在統計學也不是不可能。時間序列分析中,有些非線性模式只要初始值稍微改變,其後在時間中的路徑便會與原來的路徑發散開來。

你做時間序列分析時,會不會想想:時間序列資料究竟是樣本還是母體?如果你的研究興趣就只限於資料期間,那要不要做統計推論?當然要的,因為隨機變異的緣故。

如果你今年申請外國研究所不順利,也許在另一個宇宙裡,你不但獲名校錄取,得到鉅額獎學金,而且你的人生旅途將自此一路順遂,事業婚姻兩得意呢。

-----廣告,請繼續往下閱讀-----
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

0
0

文字

分享

0
0
0
p 值的陷阱(下):「摘櫻桃」問題
林澤民_96
・2017/01/07 ・8456字 ・閱讀時間約 17 分鐘 ・SR值 545 ・八年級

編按:本文係林澤民老師在2016年中進行的相關系列演講之一的逐字稿修訂版,本場次為2016/6/6在政大社科院的演講,題目為《看電影學統計:p 值的陷阱》。原文刊於《社會科學論叢》2016年10月第十卷第二期。

此篇文章為下篇,建議先收看上篇文章:〈 p 值的陷阱(上):p值是什麼?又不是什麼?

Source:SONY DSC
Source:Vicente Villamón

「摘櫻桃」問題

再來我們講到「摘櫻桃」問題,如同剛剛所提到,研究假設的先驗機率是如此重要,我們要如何去判定?要怎麼知道它是多少?我們必須要做文獻的分析、要建構我們的理論,在這種情況之下,會出現摘櫻桃的問題。這裡就是要呈現給大家看,譬如我們作 20 個統計檢定,從作第一個開始,本來有一個 model,但是 p 值不顯著,我們就改一下model,加一個變數、減一個變數,或是把一個變數平方,或是把一個變數取 log,或者把樣本除去一些,增加一些,這樣慢慢去試驗,最後終於得到一個顯著的結果了!但這裡告訴你,做了 20 個這樣的檢定,我們以為每一個檢定的 Type I error 控制在 0.05,可是 20 個裡面最少有一個顯著的或然率是多少?是 0.64。(圖八)

f_19859859_1
圖八

為了讓大家能夠進一步了解這個問題,再給大家看一部電影,這部電影是《班傑明的奇幻旅程》。

-----廣告,請繼續往下閱讀-----

讓大家看這部電影,我們可以注意到,這部電影所講的,跟上一部《玉蘭花》很類似,也在討論是這樣發生車禍到底是 by accident 還是 by design。它的議論應該是:這種車禍的發生,其實有一連串的因果鏈,只要這因果鏈其中有一個環節稍微不一樣、或是沒有發生的話,可能車禍就不會發生。因此它的敘述者暗示說其實是 by design,而不是 by accident。然而現在要跟大家說明,這個結論是錯的。電影要說明這是 by design 而不是 by accident 的話,是完全錯誤的。為什麼?大家只要想想看,我們政大門前有條交通繁忙的馬路,你一邊跳舞一邊過街,看會不會被車撞上,不是極有可能會嗎?為什麼?因為車禍是 by accident,它是說被某一輛特定車子撞到的機率很低,譬如是 0.05,可是如果有 20 輛車子經過的話,被其中最少一輛撞到的機率就會很大,剛才已經算給各位看,所以電影是錯誤的。

類似這種問題,其實我們日常生活中所在多有。再以大樂透為例:你買了一注大樂透,你中頭獎的機率是 1 / 13,980,000。如果你自己中獎,你也許會說這是命運,不是機率,因為中獎的機率近乎 0。但全台灣賣了5,000,000 注的大樂透,最少有一注中頭獎的機率其實是 0.30。你不能舉出有人中獎的事實就否定大樂透開獎的隨機機制。

這就是 cherry-picking,只抓住發生的事件,就來說因為有這麼多因果鏈,如果稍微有一點不一樣,這種事情就不會發生,這是錯誤的,因為它有很多其他的可能性同時存在。現在在統計學裡面,很多人很不在意這個問題,甚至主張這種問題不存在,而其實它可能比 p 值的誤用還要嚴重。這種問題叫做多重假說檢定(multiple hypothesis test)、多重比較(multiple comparison),我有同事對這種問題的反應十分強烈,主張所有的研究都必須要事先登記,什麼叫做事先登記?並非申請研究經費、寫一個研究計畫這麼簡單,所謂事先登記(pre-registration)的觀念,就是在做任何研究之前,研究者必須要把研究計畫 post 在網站上,而且 post 上之後就不能改,現在其實已經有很多這種網站存在,將來研究者發表文章,如果跟預先登記的研究設計不一樣,其他人就可以對你發表的結果提出質疑。

只從單一結果去回推的因果論其實是不正確的,因為事情在發生時其實是多重可能性並存。圖/Marcus Pink @ Flickr
只從單一結果去回推的因果論其實是不正確的,因為它有很多其他的可能性同時存在。圖/Marcus Pink @ Flickr

-----廣告,請繼續往下閱讀-----

小結:在多重假說檢定的情況下,即使 H為真,「至少有一 p 值檢定顯著」的機率常會甚大於單一 p 值檢定的顯著水平 α。以「摘櫻桃」的方式只報告顯著的檢定結果常會導致錯誤的統計推論。

結語

圖九是 ASA 建議取代 p 值的其它途徑,在此沒有時間細講,大致上是要用其它方法,比如貝式統計學。(圖九)這邊提到的很多方法都跟貝式統計學有關係。我們現場有貝式統計學的專家,他們懂得怎麼用貝式統計學來分析資料。但對於還沒有學到貝式統計學的朋友,這邊 ASA 特別提到的 confidence intervals(信心區間)是傳統統計學的方法。ASA 似乎認為使用信心區間比使用 p 值檢定要來得好,但是信心區間其實是連續性的 p 值檢定,如果只是看看虛無假設的理論值有沒有在信心區間之內,則檢定的結果跟 p 值檢定是一樣的。但如果把信心區間畫出來,至少有一個好處,它會清楚呈現出效應的大小,讓你不但能看出檢定結果的統計顯著性(statistical significance),也能看出估計值的實質顯著性或重要性(substantive significance)。我們使用信心區間,總比只用一顆星兩顆星來標明統計顯著性要好。

f_19859875_1
圖九

如果一定要用幾顆星的話,大家就不要再用 α = 0.10 了;p <0.10  就不要再加星星了。我知道 American Journal of Political Science(AJPS) 已經不接受 α = 0.10 這個顯著水準的統計檢定了;不管是單尾檢定或是雙尾檢定,用 α = 0.10 已經不被接受了。0.05 還可以,最好能用 0.01,審稿人對你較難有所批評。

但是最重要的,如果我們不得不用傳統的統計方法,我們必須要增強我們的理論論述和脈絡描述,因為增強理論論述和脈絡描述,即會增強研究假設的先驗機率。當研究假設的先驗機率比較高時,其後驗機率–偽陽性的反機率–就會比較低。這好比你健康檢查某種疾病的篩檢出現陽性時,好的醫生會從你的性別、年齡、生活習慣、飲食作息、家庭病史、乃至於居住環境等脈絡來判斷你是否有充分的病因,以之來詮釋篩檢的陽性結果。這其實就是貝氏更新的道理。

-----廣告,請繼續往下閱讀-----

我讀這些文獻後的想法是:統計學很快就會有很重大的改變,傳統的作法、用 p 值來作統計檢定的作法,大概再過幾年,就不容易再存在。所以大家必須要應變,這也是我在回國來,希望能夠提醒大家注意的一個問題。

Q&A 時間

source:Marcus Ramberg
source:Marcus Ramberg

發問1

林老師您好,謝謝您今天很精彩的演講,也很謝謝上禮拜六參加計劃時,您給我們的文章有很大的啟發與提升。今天聽了這個演講以後,我覺得我們對於 p-value 的使用可能要有心理準備,未來就算不是被全部淘汰,大部分也要被丟到另外一邊去。我在想的一個問題是,因為老師提到使用 confidence intervals,我們在寫作時,有一個習慣是會比較傾向去解釋那些在 p-value 上顯著的變數,如果說未來使用 confidence intervals 的話,我們是不是應該在文章裡面,每一個變數都要去解釋它對 dependent variable 的重要性?或是說應該怎樣去作結果的討論以及處理?謝謝!

林澤民:我想你的自變數應該也有所謂的解釋變項與控制變項吧。我覺得如果控制變項不是麼重要的話,也許就不用太費勁去討論,就著重在解釋變項。解釋變項就是不管作傳統的統計顯著或不顯著,都要加以討論。不只是討論統計的顯著性,更要討論實質的顯著性,而實質的顯著性或重要性是比較能從 confidence intervals 看出來的。其實 p 值的問題是兩面刃,說不定對我們也有好處,就是將來得到不顯著的結果,說不定都可以 publish,都可以呈現在你的論文裡面,而不用怕被人家說:明明就不顯著為什麼還要報告。

-----廣告,請繼續往下閱讀-----

發問2

林老師您好,我是經濟系的學生,謝謝林老師今天很精彩的說明,這邊至少有兩個點想跟林老師請教,以及跟大家分享。第一個就是如您剛才所說,我們在作實證研究的時候,不管是我們自己或是長期的訓練,或是目前的期刊的要求,關切的都比較是顯著的結果,所以過去在經濟學界也有對這方面的討論,談到為什麼要去關切那些不顯著的結果;同樣的道理,那些不顯著的結果要被期刊接受的機會也是非常非常低。你唯一可以被接受的理由大概就是,我們看到這個人所作的東西,以後就不要再作了,大概就是樣子。我第一點要說的是,我們目前有這樣的困境。您剛提到一個很好的論點,未來也許大家會有一個共識,就是不顯著的結果反而是更重要的。

我的第二點是一個問題:您剛剛提到,確實在醫學或自然科學部分,要去找到一些理論上的基礎,可能相對來講比較容易。在社會科學裡面,如果要去找到一些所謂的因果關係,或是比較扎實的理論,可能比較困難,因為人的行為無法像自然科學的實驗室般重複去作,且控制到所有條件都一樣。針對此部分,您剛認為要加強理論的論述,好讓 prior 來的比較 solid 一點,就社會科學部分不知道有沒有更好的一些方法,或至少不會差自然科學太多?這部分確實對我們社會科學的人來講比較困擾一點。

林澤民:我先從第二個問題來回答。我不敢說整個社會科學啦,但在政治學界大概很多人會跟你說:你可能要用賽局理論。

美國政治學在過去十幾年來有一個概念叫作 EITM-Empirical Implications for Theoretical Models。名稱有點奇怪,但它的用意是把統計分析跟理論結合,講 EITM 的人特別強調的就是形式理論,特別是賽局理論。就是作一些對人性的基本假設,然後用賽局理論的數學分法去 deduce,用邏輯去導出一些結果出來,然後再把這些結果用統計方法加以檢定。這在政治學過去十幾年來,已經變成一個很普及的概念。

-----廣告,請繼續往下閱讀-----

這有它的好處,就是在形式理論部分,只要基本假設大家能接受,它的邏輯都是沒有爭議的。嚴格來講,形式理論只要大家接受你的假設和邏輯推演,就要接受你的結果,用統計來檢定結果是多餘的。但是我們知道,比如假設行為者是理性的,然而真實的人不一定理性,所以經驗檢定還是重要的。EITM 用形式理論來增強理論的先驗機率,我想這是很不錯的。

在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr
在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr

你前面第一點提到關於不顯著的結果,當然我也不是說將來學術期刊會大量接受不顯著的檢定結果,我想也不至於,可能只是要求你把這些不顯著的結果都 post 在網頁上;然而對於教授升等,這些作品算不算也不一定,但是我想某種程度上這是合理的預期,一旦不需要使用幾顆星的話,不顯著的結果也可以放進文章裡去,期刊會從整篇文章的研究設計、立論、方法、和結果,來衡量決定到底能不能發表,而不會斤斤計較是一顆星、兩顆星,還是沒星星,所以我對這點倒是有點樂觀。其實,現在已經有很多期刊採取「預約接受刊登」(pre-acceptance)的編輯政策,也就是審查你的研究計劃就可以決定要刊登你計劃執行後的完稿,條件是不論經驗資料支持不支持你的研究假設,完稿都不得改變當初的研究設計,包括 model specification,這就是說不顯著的結果也要刊登了。

其實可以跟大家預告一下,八月四日在中央研究院政治學研究所,為了慶祝所慶,有一個學術討論會。討論會的主題是「甚麼是研究發現」?引言人有朱雲漢、吳玉山兩位院士跟我三個人。我的任務就是報告 p-value 的問題。傳統來講,統計上顯著的結果才叫做 findings,不顯著的結果是 non-findings,但是這觀念可能要有所改變了。這等到八月四日再專門來講。

-----廣告,請繼續往下閱讀-----

發問3

謝謝林老師很深入淺出的演講,之前在上統計課的時候,雖然有講到 p-value 的問題,但每次在上大學部課程時,我常常都沒辦法把這一塊講得這麼清楚。在我還是研究生的時候,我們就有很多這方面的討論,而這幾年這問題特別地被突顯,我認為很大的原因,大概是電腦技術越來越好、作 testing 的困擾已經越來越少;另一方面,如果你相信 Bayesian 的話,你應該相信所有的 parameters 都該是 probability term,而不是 deterministic term,說它是顯著還是不顯著。我也有一個問題想請教林老師,您如今在基礎統計的教學裡面,對 p-value 是用傳統 frequentist 的講法,還是像現在等於把它推翻?因為我常有這樣的困擾,就是在初級的課用 frequentist 的方式講,然後到了進階的課,再拿 Bayesian 的 approach 去推翻自己原本以前講的。我不知道林老師您目前在授課時,是用什麼樣的方式?特別是針對 frequentist 的邏輯。

林澤民:我想你對 p 值問題的了解應該比我更早。我是這幾年來才慢慢地逐步了解這個問題。在教學上要採取立即的改變,其實很不容易,我完全了解。我們有一個同事後來就在抱怨,ASA 為什麼要發表這個東西?他說現在所有的journal articles,還有教材、教科書,全部-至少百分之九十幾-都是傳統的統計學,你怎麼來教大學生新的東西?所以這是很困難的。今天我在這裡演講,如果有一點點是我自己觀察來的結果,而不是完全從文獻上得到的,我想是關於 prior-HA 的 prior-怎樣去影響到偽陽性的反機率,這我覺得很重要。

我目前教學仍是會用傳統方法,畢竟要把一本教科書重新編輯、作講義,是很大的工程。此外,我自己跟你不一樣,我是 frequentist,你來教 Bayesian 比我容易多了。我以前會放電影,跟學生講 p 值是什麼。我現在也放電影,跟學生講 p 值有什麼問題,讓他們了解。然後我會對他們說,在還沒學習貝式統計學之前,要比較強調 prior。也就是你用傳統的統計方法作研究,如果研究假設沒有很高的 prior 的話,也許你就不要作了。

發問(接續):我只是有時候會有點精神錯亂,之前跟學生講過的東西,在比較進階的課程時就要把它推翻掉。

-----廣告,請繼續往下閱讀-----

林澤民:在座如果有老師教統計學,請你不要說:林老師今天講的就代表我上課講的都錯了。學生也不要說我上課學的都錯了。不是這麼一回事,這不是我的用意。因為 p 值本身它並沒有錯,錯的是大家對它的誤解誤用。至於傳統的教學方法要怎麼改,我們要慢慢試,但是我們要了解這個問題的存在。我自己到最近教學還是用傳統方法,如果今天請我的學生來聽我演講,他們會說:老師你以前教的都錯了。但事實上,不只是我們教書的,有多少科學、商業或政策上的決定,都是奠基於 p 值檢定的結果之上,我們能說他們都錯了嗎?我想不能說他們都是錯的,可是我們要改變。

發問4

林老師好,我是理學院資科系的老師。非常謝謝林老師,很高興今天上老師的課。關於剛剛幾位老師的討論,我覺得在我們資科系,很多人的直覺,一個方法要嘛是對、要嘛是錯。你們搞機率的卻是:它可能百分之八十對、百分之二十錯。我覺得應該講清楚的是,就 prior 來講,只要 prior 夠強,過去 p-value 的方法大概是對的。這應該有range,大部分問題,只要 prior 在 range 裡面,或許 p-value 的方法是相當可靠的。我不會推翻過去的教學方法,說一切都是錯的,其實沒有麼嚴重。在大部分的問題裡面,過去的方法也許是可用的,只是今天我們面對一些方法,單獨的 p-value 並不是麼可靠,也就是一個漸進式的改變,這樣我們不會打自己嘴巴。

大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr
大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr

林澤民:對,我完全同意。這就是為什麼我做了這三個圖表,可以看到雖然影響偽陽性反機率的因素包括 prior 和 power,但其實主要是 prior。即使 power 低到 0.50,只要 prior 也有 0.50,偽陽性的反機率也不過是 0.09。如果你願意用 0.10 的顯著水準,0.09 還是顯著的!要給一個可接受的 range,我覺得 prior 大於 0.50 的話,其實都還好。最怕的就是 prior 很低很低,像 ESP 這種研究假設。這也是為什麼在 p-value 問題的討論上,那一篇知名心理學家對 ESP 作的研究會被拿出來討論,因為它的 prior 幾乎是零,但是這只能夠很粗略的估計。

發問5

老師,這邊有一個小問題是:假設現在有十篇從舊到新的文章,它們的先驗機率都不太一樣,我如果要寫一篇文章,我要用最新一篇的先驗嗎?還是由自己發展出來、自己認定?

林澤民:當然你說先驗機率不太一樣,它為什麼會不一樣?是因為理論根本不一樣嗎?還是說因為時間的關係,大家有越來越多的研究發表,先驗機率就會逐步改變?如果已經有一個文獻,通常是建議你要作後設研究,叫 meta-analysis,就是把過去發表的文章統一起來作一個研究。但坦白說我個人也沒有作過這種 meta-analysis,可能可以在這方面的文獻去看一下。Eric,你可以就 meta-analysis 這點再作補充?

俞振華:嘗試把各種不同的 model 的係數,最後統整,變成有點類似老師您剛提的,試很多的 model 的 specification,然後組成一個結果。

林澤民:對,我讀的這些 p-value 的文獻裡面,其實有些文章就是作 meta-analysis。

發問6

我有兩個關於寫作的問題,因為從老師的演講得到非常多心得。其中一個問題是,如果能強調理論先驗機率的強度,老師剛有提到用 EITM 看能不能夠結合形式理論的一些邏輯去增強強度,此外,我在思考是否有可能,至少就我自己在寫作時,會提出一些案例,然後再稍微說明,我有些案例,當然這些案例可證的是少數,因為全世界有一百多個國家,我們只有一兩個案例而已,說服力有限,但多多少少還是有些用處。我在想這樣作是否 Okay?這是為了提升理論先驗機率的說服力,而提出一些案例來作討論。

只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr
只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr

第二,剛剛老師提到有關 non-findings,這些發現,相信以後應該越來越多人至少在文中會提到,可能一段、或幾句話。就老師的想法來說,要提是要怎麼提?是跟目前為止像跟大家講的一樣,要提的話就只能說,結果顯示並不是 statistically significant,就這樣子很平鋪直敘的描述?還是要稍微把重點放在跟理論的連結,即便結果沒有很顯著,但也不代表我的理論是錯的。我不曉得能不能這樣講,也許不行,因為太武斷。只是不曉得未來大家在強調沒有統計顯著水準的結果時,是要怎麼表達?是要平鋪直敘地講,還是要有些焦點?有些要強調、有些不一樣?

林澤民:我想先講第二個問題,而其實這在 Bayesian 根本就不是問題,Bayesian 就把 posterior distributions 畫出來就好,你根本也不需要去提是否顯著,因為「顯著」的概念本來就是 frequentist 的概念,它不是 Bayesian 的概念。所以要是你看過一些 Bayesian 的文章,你會看到它畫很多圖,每個圖都很小,一小格就一個圖,然後圖就畫上 posterior distributions,甚至連 credible intervals 也不一定要畫出。

俞振華:但是為了要跟 frequentist 對話,現在還是會有 95 % 的 credible intervals。

林澤民:對,不過需要 95 % 嗎?因為我最近寫一篇文章,合作者說 68 % 就可以。所以我想可能就不需要去談什麼顯著不顯著,你就把圖畫出來就好。你若不是 Bayesian,就用 confidence intervals,然後你去畫圖,每一個變數的係數你就把 confidence intervals 畫出來。至於 0 有沒有在 confidence intervals 裡面,我想不必然是唯一的重要標準,當然就實際情況來說,仍要看你的 reviewers 有沒有接受你的結果。我必須要強調,在網路上你還是可以找到一些文章,它們要替 p-value 辯護。要是碰到這樣的評論者,可能就必須要小心。

你第一個問題是說,提出實質案例而不一定是理論,我覺得也可以,我個人會接受,因為所謂文獻,除了理論之外,還有這種實質的知識、地方性的知識。我個人認為這些知識可以幫助我們加強 prior,特別是當這些案例能夠增加我們了解自己研究假設的脈絡時。ASA 的聲明特別提到脈絡(context)的重要性,我剛剛也有提到醫生詮釋陽性反應時,通常要參考病人所處的脈絡。但是我必須要說,我今天特別強調 prior 的重要性,我不知道在座是否有其他學者可以肯定我這一點,我覺得我個人強調 prior,可能與文獻上的這些在講 p-value 的危險性的 articles 相較時,我強調的可能比較多一點。我不能保證所有的統計學者都會同意我的看法,所以要是碰到我來評審你的文章就好了。但是我希望我講的還是有點說服力吧?要是你研究假設的 prior 夠強,可能 p-value 的問題就不是這麼大。

發問7

聽了很多同仁的問題,還有老師的回答以後,我這邊另外的問題是,因為在一開始,老師提到一個期刊-Basic and Applied Social Psychology,也講了 ASA 在今年提出的聲明,我想問,ASA 它的官方期刊─ JASA,是否已經有接受,或是應該說拒絕這種只報 p-value 的文章?還是說他們政策現在是做一個調整,同時都接受兩種?

林澤民:很抱歉,JASA 的文章我不是經常在看,我不能回答你的問題。但是我剛剛已經講了,BASP 在他們政策制定之後,ASA 有一個回應,不是那個 official statement,是在發表 official statement 之前的一個回應。那個回應只說 ASA 正在籌擬一個 official statement。而最後這 official statement 其實跟 BASP 的決定是不一樣的。因為 ASA 的 official statement,第一點在說明 p-value 是什麼,它並沒有說 p-value 錯誤,只是把 p-value 的正確意義講出來。換句話說,只要是使用正確的意義,p-value 並沒有問題,只是不要去誤用它。不要只是著重在統計顯著性,因為 model 對錯的機率跟 p-value 不一樣,要使用 p-value 作檢定,要把它跟 α 來做比較,所以問題不只是 p-value,而是 α。界定了 α 之後,才知道結果是不是顯著。當得到一個顯著的結果以後,必須再來衡量偽陽性反機率的問題,也就是 model 後設機率的問題,這就不是 p-value 可以告訴你的。

本文《看電影學統計:p 值的陷阱》轉載自 Tse-min Lin 的部落格

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。