0

0
0

文字

分享

0
0
0

p 值的陷阱(下):「摘櫻桃」問題

tml_96
・2017/01/07 ・8456字 ・閱讀時間約 17 分鐘 ・SR值 545 ・八年級

編按:本文係林澤民老師在2016年中進行的相關系列演講之一的逐字稿修訂版,本場次為2016/6/6在政大社科院的演講,題目為《看電影學統計:p 值的陷阱》。原文刊於《社會科學論叢》2016年10月第十卷第二期。

此篇文章為下篇,建議先收看上篇文章:〈 p 值的陷阱(上):p值是什麼?又不是什麼?

Source:SONY DSC
Source:Vicente Villamón

「摘櫻桃」問題

再來我們講到「摘櫻桃」問題,如同剛剛所提到,研究假設的先驗機率是如此重要,我們要如何去判定?要怎麼知道它是多少?我們必須要做文獻的分析、要建構我們的理論,在這種情況之下,會出現摘櫻桃的問題。這裡就是要呈現給大家看,譬如我們作 20 個統計檢定,從作第一個開始,本來有一個 model,但是 p 值不顯著,我們就改一下model,加一個變數、減一個變數,或是把一個變數平方,或是把一個變數取 log,或者把樣本除去一些,增加一些,這樣慢慢去試驗,最後終於得到一個顯著的結果了!但這裡告訴你,做了 20 個這樣的檢定,我們以為每一個檢定的 Type I error 控制在 0.05,可是 20 個裡面最少有一個顯著的或然率是多少?是 0.64。(圖八)

f_19859859_1
圖八

為了讓大家能夠進一步了解這個問題,再給大家看一部電影,這部電影是《班傑明的奇幻旅程》。

讓大家看這部電影,我們可以注意到,這部電影所講的,跟上一部《玉蘭花》很類似,也在討論是這樣發生車禍到底是 by accident 還是 by design。它的議論應該是:這種車禍的發生,其實有一連串的因果鏈,只要這因果鏈其中有一個環節稍微不一樣、或是沒有發生的話,可能車禍就不會發生。因此它的敘述者暗示說其實是 by design,而不是 by accident。然而現在要跟大家說明,這個結論是錯的。電影要說明這是 by design 而不是 by accident 的話,是完全錯誤的。為什麼?大家只要想想看,我們政大門前有條交通繁忙的馬路,你一邊跳舞一邊過街,看會不會被車撞上,不是極有可能會嗎?為什麼?因為車禍是 by accident,它是說被某一輛特定車子撞到的機率很低,譬如是 0.05,可是如果有 20 輛車子經過的話,被其中最少一輛撞到的機率就會很大,剛才已經算給各位看,所以電影是錯誤的。

類似這種問題,其實我們日常生活中所在多有。再以大樂透為例:你買了一注大樂透,你中頭獎的機率是 1 / 13,980,000。如果你自己中獎,你也許會說這是命運,不是機率,因為中獎的機率近乎 0。但全台灣賣了5,000,000 注的大樂透,最少有一注中頭獎的機率其實是 0.30。你不能舉出有人中獎的事實就否定大樂透開獎的隨機機制。

這就是 cherry-picking,只抓住發生的事件,就來說因為有這麼多因果鏈,如果稍微有一點不一樣,這種事情就不會發生,這是錯誤的,因為它有很多其他的可能性同時存在。現在在統計學裡面,很多人很不在意這個問題,甚至主張這種問題不存在,而其實它可能比 p 值的誤用還要嚴重。這種問題叫做多重假說檢定(multiple hypothesis test)、多重比較(multiple comparison),我有同事對這種問題的反應十分強烈,主張所有的研究都必須要事先登記,什麼叫做事先登記?並非申請研究經費、寫一個研究計畫這麼簡單,所謂事先登記(pre-registration)的觀念,就是在做任何研究之前,研究者必須要把研究計畫 post 在網站上,而且 post 上之後就不能改,現在其實已經有很多這種網站存在,將來研究者發表文章,如果跟預先登記的研究設計不一樣,其他人就可以對你發表的結果提出質疑。

只從單一結果去回推的因果論其實是不正確的,因為事情在發生時其實是多重可能性並存。圖/Marcus Pink @ Flickr
只從單一結果去回推的因果論其實是不正確的,因為它有很多其他的可能性同時存在。圖/Marcus Pink @ Flickr

小結:在多重假說檢定的情況下,即使 H為真,「至少有一 p 值檢定顯著」的機率常會甚大於單一 p 值檢定的顯著水平 α。以「摘櫻桃」的方式只報告顯著的檢定結果常會導致錯誤的統計推論。

結語

圖九是 ASA 建議取代 p 值的其它途徑,在此沒有時間細講,大致上是要用其它方法,比如貝式統計學。(圖九)這邊提到的很多方法都跟貝式統計學有關係。我們現場有貝式統計學的專家,他們懂得怎麼用貝式統計學來分析資料。但對於還沒有學到貝式統計學的朋友,這邊 ASA 特別提到的 confidence intervals(信心區間)是傳統統計學的方法。ASA 似乎認為使用信心區間比使用 p 值檢定要來得好,但是信心區間其實是連續性的 p 值檢定,如果只是看看虛無假設的理論值有沒有在信心區間之內,則檢定的結果跟 p 值檢定是一樣的。但如果把信心區間畫出來,至少有一個好處,它會清楚呈現出效應的大小,讓你不但能看出檢定結果的統計顯著性(statistical significance),也能看出估計值的實質顯著性或重要性(substantive significance)。我們使用信心區間,總比只用一顆星兩顆星來標明統計顯著性要好。

f_19859875_1
圖九

如果一定要用幾顆星的話,大家就不要再用 α = 0.10 了;p <0.10  就不要再加星星了。我知道 American Journal of Political Science(AJPS) 已經不接受 α = 0.10 這個顯著水準的統計檢定了;不管是單尾檢定或是雙尾檢定,用 α = 0.10 已經不被接受了。0.05 還可以,最好能用 0.01,審稿人對你較難有所批評。

但是最重要的,如果我們不得不用傳統的統計方法,我們必須要增強我們的理論論述和脈絡描述,因為增強理論論述和脈絡描述,即會增強研究假設的先驗機率。當研究假設的先驗機率比較高時,其後驗機率–偽陽性的反機率–就會比較低。這好比你健康檢查某種疾病的篩檢出現陽性時,好的醫生會從你的性別、年齡、生活習慣、飲食作息、家庭病史、乃至於居住環境等脈絡來判斷你是否有充分的病因,以之來詮釋篩檢的陽性結果。這其實就是貝氏更新的道理。

我讀這些文獻後的想法是:統計學很快就會有很重大的改變,傳統的作法、用 p 值來作統計檢定的作法,大概再過幾年,就不容易再存在。所以大家必須要應變,這也是我在回國來,希望能夠提醒大家注意的一個問題。

Q&A 時間

source:Marcus Ramberg
source:Marcus Ramberg

發問1

林老師您好,謝謝您今天很精彩的演講,也很謝謝上禮拜六參加計劃時,您給我們的文章有很大的啟發與提升。今天聽了這個演講以後,我覺得我們對於 p-value 的使用可能要有心理準備,未來就算不是被全部淘汰,大部分也要被丟到另外一邊去。我在想的一個問題是,因為老師提到使用 confidence intervals,我們在寫作時,有一個習慣是會比較傾向去解釋那些在 p-value 上顯著的變數,如果說未來使用 confidence intervals 的話,我們是不是應該在文章裡面,每一個變數都要去解釋它對 dependent variable 的重要性?或是說應該怎樣去作結果的討論以及處理?謝謝!

林澤民:我想你的自變數應該也有所謂的解釋變項與控制變項吧。我覺得如果控制變項不是麼重要的話,也許就不用太費勁去討論,就著重在解釋變項。解釋變項就是不管作傳統的統計顯著或不顯著,都要加以討論。不只是討論統計的顯著性,更要討論實質的顯著性,而實質的顯著性或重要性是比較能從 confidence intervals 看出來的。其實 p 值的問題是兩面刃,說不定對我們也有好處,就是將來得到不顯著的結果,說不定都可以 publish,都可以呈現在你的論文裡面,而不用怕被人家說:明明就不顯著為什麼還要報告。

發問2

林老師您好,我是經濟系的學生,謝謝林老師今天很精彩的說明,這邊至少有兩個點想跟林老師請教,以及跟大家分享。第一個就是如您剛才所說,我們在作實證研究的時候,不管是我們自己或是長期的訓練,或是目前的期刊的要求,關切的都比較是顯著的結果,所以過去在經濟學界也有對這方面的討論,談到為什麼要去關切那些不顯著的結果;同樣的道理,那些不顯著的結果要被期刊接受的機會也是非常非常低。你唯一可以被接受的理由大概就是,我們看到這個人所作的東西,以後就不要再作了,大概就是樣子。我第一點要說的是,我們目前有這樣的困境。您剛提到一個很好的論點,未來也許大家會有一個共識,就是不顯著的結果反而是更重要的。

我的第二點是一個問題:您剛剛提到,確實在醫學或自然科學部分,要去找到一些理論上的基礎,可能相對來講比較容易。在社會科學裡面,如果要去找到一些所謂的因果關係,或是比較扎實的理論,可能比較困難,因為人的行為無法像自然科學的實驗室般重複去作,且控制到所有條件都一樣。針對此部分,您剛認為要加強理論的論述,好讓 prior 來的比較 solid 一點,就社會科學部分不知道有沒有更好的一些方法,或至少不會差自然科學太多?這部分確實對我們社會科學的人來講比較困擾一點。

林澤民:我先從第二個問題來回答。我不敢說整個社會科學啦,但在政治學界大概很多人會跟你說:你可能要用賽局理論。

美國政治學在過去十幾年來有一個概念叫作 EITM-Empirical Implications for Theoretical Models。名稱有點奇怪,但它的用意是把統計分析跟理論結合,講 EITM 的人特別強調的就是形式理論,特別是賽局理論。就是作一些對人性的基本假設,然後用賽局理論的數學分法去 deduce,用邏輯去導出一些結果出來,然後再把這些結果用統計方法加以檢定。這在政治學過去十幾年來,已經變成一個很普及的概念。

這有它的好處,就是在形式理論部分,只要基本假設大家能接受,它的邏輯都是沒有爭議的。嚴格來講,形式理論只要大家接受你的假設和邏輯推演,就要接受你的結果,用統計來檢定結果是多餘的。但是我們知道,比如假設行為者是理性的,然而真實的人不一定理性,所以經驗檢定還是重要的。EITM 用形式理論來增強理論的先驗機率,我想這是很不錯的。

在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr
在社會科學理論生成的背後,對於人性的基本假設只要大眾大致能同意,對於推論的結果也就能接受。圖/Adrian Hu @ Flickr

你前面第一點提到關於不顯著的結果,當然我也不是說將來學術期刊會大量接受不顯著的檢定結果,我想也不至於,可能只是要求你把這些不顯著的結果都 post 在網頁上;然而對於教授升等,這些作品算不算也不一定,但是我想某種程度上這是合理的預期,一旦不需要使用幾顆星的話,不顯著的結果也可以放進文章裡去,期刊會從整篇文章的研究設計、立論、方法、和結果,來衡量決定到底能不能發表,而不會斤斤計較是一顆星、兩顆星,還是沒星星,所以我對這點倒是有點樂觀。其實,現在已經有很多期刊採取「預約接受刊登」(pre-acceptance)的編輯政策,也就是審查你的研究計劃就可以決定要刊登你計劃執行後的完稿,條件是不論經驗資料支持不支持你的研究假設,完稿都不得改變當初的研究設計,包括 model specification,這就是說不顯著的結果也要刊登了。

其實可以跟大家預告一下,八月四日在中央研究院政治學研究所,為了慶祝所慶,有一個學術討論會。討論會的主題是「甚麼是研究發現」?引言人有朱雲漢、吳玉山兩位院士跟我三個人。我的任務就是報告 p-value 的問題。傳統來講,統計上顯著的結果才叫做 findings,不顯著的結果是 non-findings,但是這觀念可能要有所改變了。這等到八月四日再專門來講。

發問3

謝謝林老師很深入淺出的演講,之前在上統計課的時候,雖然有講到 p-value 的問題,但每次在上大學部課程時,我常常都沒辦法把這一塊講得這麼清楚。在我還是研究生的時候,我們就有很多這方面的討論,而這幾年這問題特別地被突顯,我認為很大的原因,大概是電腦技術越來越好、作 testing 的困擾已經越來越少;另一方面,如果你相信 Bayesian 的話,你應該相信所有的 parameters 都該是 probability term,而不是 deterministic term,說它是顯著還是不顯著。我也有一個問題想請教林老師,您如今在基礎統計的教學裡面,對 p-value 是用傳統 frequentist 的講法,還是像現在等於把它推翻?因為我常有這樣的困擾,就是在初級的課用 frequentist 的方式講,然後到了進階的課,再拿 Bayesian 的 approach 去推翻自己原本以前講的。我不知道林老師您目前在授課時,是用什麼樣的方式?特別是針對 frequentist 的邏輯。

林澤民:我想你對 p 值問題的了解應該比我更早。我是這幾年來才慢慢地逐步了解這個問題。在教學上要採取立即的改變,其實很不容易,我完全了解。我們有一個同事後來就在抱怨,ASA 為什麼要發表這個東西?他說現在所有的journal articles,還有教材、教科書,全部-至少百分之九十幾-都是傳統的統計學,你怎麼來教大學生新的東西?所以這是很困難的。今天我在這裡演講,如果有一點點是我自己觀察來的結果,而不是完全從文獻上得到的,我想是關於 prior-HA 的 prior-怎樣去影響到偽陽性的反機率,這我覺得很重要。

我目前教學仍是會用傳統方法,畢竟要把一本教科書重新編輯、作講義,是很大的工程。此外,我自己跟你不一樣,我是 frequentist,你來教 Bayesian 比我容易多了。我以前會放電影,跟學生講 p 值是什麼。我現在也放電影,跟學生講 p 值有什麼問題,讓他們了解。然後我會對他們說,在還沒學習貝式統計學之前,要比較強調 prior。也就是你用傳統的統計方法作研究,如果研究假設沒有很高的 prior 的話,也許你就不要作了。

發問(接續):我只是有時候會有點精神錯亂,之前跟學生講過的東西,在比較進階的課程時就要把它推翻掉。

林澤民:在座如果有老師教統計學,請你不要說:林老師今天講的就代表我上課講的都錯了。學生也不要說我上課學的都錯了。不是這麼一回事,這不是我的用意。因為 p 值本身它並沒有錯,錯的是大家對它的誤解誤用。至於傳統的教學方法要怎麼改,我們要慢慢試,但是我們要了解這個問題的存在。我自己到最近教學還是用傳統方法,如果今天請我的學生來聽我演講,他們會說:老師你以前教的都錯了。但事實上,不只是我們教書的,有多少科學、商業或政策上的決定,都是奠基於 p 值檢定的結果之上,我們能說他們都錯了嗎?我想不能說他們都是錯的,可是我們要改變。

發問4

林老師好,我是理學院資科系的老師。非常謝謝林老師,很高興今天上老師的課。關於剛剛幾位老師的討論,我覺得在我們資科系,很多人的直覺,一個方法要嘛是對、要嘛是錯。你們搞機率的卻是:它可能百分之八十對、百分之二十錯。我覺得應該講清楚的是,就 prior 來講,只要 prior 夠強,過去 p-value 的方法大概是對的。這應該有range,大部分問題,只要 prior 在 range 裡面,或許 p-value 的方法是相當可靠的。我不會推翻過去的教學方法,說一切都是錯的,其實沒有麼嚴重。在大部分的問題裡面,過去的方法也許是可用的,只是今天我們面對一些方法,單獨的 p-value 並不是麼可靠,也就是一個漸進式的改變,這樣我們不會打自己嘴巴。

大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr
大部分問題,只要仍在某一可接受範圍內,就不必因為新方法產生而被全盤推翻,只要慢慢漸進調整即可。圖/Marcus Mailov @ Flickr

林澤民:對,我完全同意。這就是為什麼我做了這三個圖表,可以看到雖然影響偽陽性反機率的因素包括 prior 和 power,但其實主要是 prior。即使 power 低到 0.50,只要 prior 也有 0.50,偽陽性的反機率也不過是 0.09。如果你願意用 0.10 的顯著水準,0.09 還是顯著的!要給一個可接受的 range,我覺得 prior 大於 0.50 的話,其實都還好。最怕的就是 prior 很低很低,像 ESP 這種研究假設。這也是為什麼在 p-value 問題的討論上,那一篇知名心理學家對 ESP 作的研究會被拿出來討論,因為它的 prior 幾乎是零,但是這只能夠很粗略的估計。

發問5

老師,這邊有一個小問題是:假設現在有十篇從舊到新的文章,它們的先驗機率都不太一樣,我如果要寫一篇文章,我要用最新一篇的先驗嗎?還是由自己發展出來、自己認定?

林澤民:當然你說先驗機率不太一樣,它為什麼會不一樣?是因為理論根本不一樣嗎?還是說因為時間的關係,大家有越來越多的研究發表,先驗機率就會逐步改變?如果已經有一個文獻,通常是建議你要作後設研究,叫 meta-analysis,就是把過去發表的文章統一起來作一個研究。但坦白說我個人也沒有作過這種 meta-analysis,可能可以在這方面的文獻去看一下。Eric,你可以就 meta-analysis 這點再作補充?

俞振華:嘗試把各種不同的 model 的係數,最後統整,變成有點類似老師您剛提的,試很多的 model 的 specification,然後組成一個結果。

林澤民:對,我讀的這些 p-value 的文獻裡面,其實有些文章就是作 meta-analysis。

發問6

我有兩個關於寫作的問題,因為從老師的演講得到非常多心得。其中一個問題是,如果能強調理論先驗機率的強度,老師剛有提到用 EITM 看能不能夠結合形式理論的一些邏輯去增強強度,此外,我在思考是否有可能,至少就我自己在寫作時,會提出一些案例,然後再稍微說明,我有些案例,當然這些案例可證的是少數,因為全世界有一百多個國家,我們只有一兩個案例而已,說服力有限,但多多少少還是有些用處。我在想這樣作是否 Okay?這是為了提升理論先驗機率的說服力,而提出一些案例來作討論。

只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr
只可證明少數的案例是否能用來提升理論先驗機率的說服力?圖/lee vickers @ Flickr

第二,剛剛老師提到有關 non-findings,這些發現,相信以後應該越來越多人至少在文中會提到,可能一段、或幾句話。就老師的想法來說,要提是要怎麼提?是跟目前為止像跟大家講的一樣,要提的話就只能說,結果顯示並不是 statistically significant,就這樣子很平鋪直敘的描述?還是要稍微把重點放在跟理論的連結,即便結果沒有很顯著,但也不代表我的理論是錯的。我不曉得能不能這樣講,也許不行,因為太武斷。只是不曉得未來大家在強調沒有統計顯著水準的結果時,是要怎麼表達?是要平鋪直敘地講,還是要有些焦點?有些要強調、有些不一樣?

林澤民:我想先講第二個問題,而其實這在 Bayesian 根本就不是問題,Bayesian 就把 posterior distributions 畫出來就好,你根本也不需要去提是否顯著,因為「顯著」的概念本來就是 frequentist 的概念,它不是 Bayesian 的概念。所以要是你看過一些 Bayesian 的文章,你會看到它畫很多圖,每個圖都很小,一小格就一個圖,然後圖就畫上 posterior distributions,甚至連 credible intervals 也不一定要畫出。

俞振華:但是為了要跟 frequentist 對話,現在還是會有 95 % 的 credible intervals。

林澤民:對,不過需要 95 % 嗎?因為我最近寫一篇文章,合作者說 68 % 就可以。所以我想可能就不需要去談什麼顯著不顯著,你就把圖畫出來就好。你若不是 Bayesian,就用 confidence intervals,然後你去畫圖,每一個變數的係數你就把 confidence intervals 畫出來。至於 0 有沒有在 confidence intervals 裡面,我想不必然是唯一的重要標準,當然就實際情況來說,仍要看你的 reviewers 有沒有接受你的結果。我必須要強調,在網路上你還是可以找到一些文章,它們要替 p-value 辯護。要是碰到這樣的評論者,可能就必須要小心。

你第一個問題是說,提出實質案例而不一定是理論,我覺得也可以,我個人會接受,因為所謂文獻,除了理論之外,還有這種實質的知識、地方性的知識。我個人認為這些知識可以幫助我們加強 prior,特別是當這些案例能夠增加我們了解自己研究假設的脈絡時。ASA 的聲明特別提到脈絡(context)的重要性,我剛剛也有提到醫生詮釋陽性反應時,通常要參考病人所處的脈絡。但是我必須要說,我今天特別強調 prior 的重要性,我不知道在座是否有其他學者可以肯定我這一點,我覺得我個人強調 prior,可能與文獻上的這些在講 p-value 的危險性的 articles 相較時,我強調的可能比較多一點。我不能保證所有的統計學者都會同意我的看法,所以要是碰到我來評審你的文章就好了。但是我希望我講的還是有點說服力吧?要是你研究假設的 prior 夠強,可能 p-value 的問題就不是這麼大。

發問7

聽了很多同仁的問題,還有老師的回答以後,我這邊另外的問題是,因為在一開始,老師提到一個期刊-Basic and Applied Social Psychology,也講了 ASA 在今年提出的聲明,我想問,ASA 它的官方期刊─ JASA,是否已經有接受,或是應該說拒絕這種只報 p-value 的文章?還是說他們政策現在是做一個調整,同時都接受兩種?

林澤民:很抱歉,JASA 的文章我不是經常在看,我不能回答你的問題。但是我剛剛已經講了,BASP 在他們政策制定之後,ASA 有一個回應,不是那個 official statement,是在發表 official statement 之前的一個回應。那個回應只說 ASA 正在籌擬一個 official statement。而最後這 official statement 其實跟 BASP 的決定是不一樣的。因為 ASA 的 official statement,第一點在說明 p-value 是什麼,它並沒有說 p-value 錯誤,只是把 p-value 的正確意義講出來。換句話說,只要是使用正確的意義,p-value 並沒有問題,只是不要去誤用它。不要只是著重在統計顯著性,因為 model 對錯的機率跟 p-value 不一樣,要使用 p-value 作檢定,要把它跟 α 來做比較,所以問題不只是 p-value,而是 α。界定了 α 之後,才知道結果是不是顯著。當得到一個顯著的結果以後,必須再來衡量偽陽性反機率的問題,也就是 model 後設機率的問題,這就不是 p-value 可以告訴你的。

本文《看電影學統計:p 值的陷阱》轉載自 Tse-min Lin 的部落格


數感宇宙探索課程,現正募資中!

文章難易度
tml_96
34 篇文章 ・ 222 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。


2

11
3

文字

分享

2
11
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 17 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook