Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

世界最快顯微鏡問世 阿秒瞬間捕捉電子運動

顯微觀點_96
・2024/11/11 ・1726字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

Adobestock 276618934
圖/顯微觀點

穿透式電子顯微鏡(transmission electron microscope, TEM)的出世,將物體放大數百萬倍,讓科學家得幾看見小至 0.1 奈米的樣本結構。但是「看得小還要看得快」,若要看到電子的運動軌跡,還得快速捕捉才能看得清楚。

美國亞利桑那大學(University of Arizona)物理與光學系副教授哈山(Mohammed Th. Hassan)率領的研究團隊,日前開發了世界上最快的電子顯微鏡,小至 1 阿秒(attosecond)的解析度,能更精確地捕獲分子內的電子快速運動。

2023年諾貝爾物理學獎頒給法國物理學家皮耶.阿戈斯提尼(Pierre Agostini)、匈牙利/奧地利物理學家費倫茨.克勞斯(Ferenc Krausz)和法國/瑞典物理學家安妮.呂利耶(Anne L’Huillier),表彰他們「發展出產生阿秒光脈衝的實驗方法,得以研究物質中的電子動力學」。哈山團隊便是以此技術為基礎進行研究開發。

-----廣告,請繼續往下閱讀-----

21 世紀初,首次出現了具有奈秒(nanosecond)解析度的電子顯微鏡,以對雷射誘導的鎳金屬熔化和鈷塊體的形態變化進行成像,在這之後許多研究工作都集中在提高電子顯微鏡的時間解析度。

2008 年,電子顯微鏡的時間解析度提高到亞皮秒,亦即比皮秒(picosecond)還要小的時間尺度,擴展了電子顯微鏡對更快的分子和原子運動進行成像的能力。而透過連續和脈衝雷射光束的閘控技術,可將時間解析度提高到亞飛秒的時間尺度,記錄數阿秒的平均動態影片。

但這樣的阿秒脈衝序列僅限於成像週期性動力學,對非週期性的運動,如電荷遷移、電子運動等須將探測限制為單一事件的研究,則需要產生(使用)單一阿秒電子脈衝。

哈山團隊開發的顯微鏡,使用雷射將電子束切割成兩個超短脈衝。第一個脈衝稱為泵浦脈衝(pump pulse),將能量注入樣品並導致電子移動或其他快速變化;第二個脈衝稱為光閘脈衝(optical gating pulse),創造一個短暫時間視窗,產生閘控的單一阿秒電子脈衝。仔細同步兩個脈衝,研究人員就可以控制電子脈衝何時探測樣品。

-----廣告,請繼續往下閱讀-----
World Fastes Microscope
閘控光束被引導至發生電子閘控和阿秒電子脈衝產生的樣品位置,用於記錄影像(衍射/直接)以探測物質的電子動力學。圖/Attosecond electron microscopy and diffraction

就像相機上的快門一樣,這些脈衝也使團隊能夠每 625 阿秒捕捉一張石墨烯片中電子的新影像,時間解析度大約是現有技術的一千倍。

團隊也提到許多實驗因素對於執行阿秒電子成像實驗至關重要,例如:雷射的高重複率,以閘控大量電子;以及雷射光束的高穩定性強度來實現顯微鏡中的低訊噪比等。

「當你獲得最新一代的智慧型手機時,通常配備更好的相機」,哈山表示新開發的穿透式電子顯微鏡就像最新智慧型手機搭載非常強大的相機。

「現在使用我們的電子透射顯微鏡首次能夠達到阿秒級的時間解析度,我們稱之為『阿秒顯微術』。這是第一次,我們可以看到電子在運動中的樣態」,哈山說道。

-----廣告,請繼續往下閱讀-----

而新開發的電子顯微鏡可以即時拍攝、控制化學和生化反應,預期也將對材料合成、藥物設計和個人化醫療領域的研究產生助益。

時間的數量級

  • 阿秒(as):10-18 秒
  • 飛秒(fs):10-15 秒
  • 皮秒(ps):10-12 秒
  • 奈秒(ns):10-9 秒
  • 微秒(µs):10-6 秒
  • 毫秒(ms):10-3 秒
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
26 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia