Loading [MathJax]/extensions/tex2jax.js

2

0
1

文字

分享

2
0
1

【食慾之秋】你看看,樹上的栗子已長得這麼大了——「千果之王」栗子

彥寧
・2019/11/23 ・2982字 ・閱讀時間約 6 分鐘 ・SR值 414 ・四年級

十一月專題【食慾之秋】天冷了,來點好吃的吧!

嘿嘿嘿,最近季節也漸漸邁入秋天,畢竟是果實豐收的季節,所以總是讓人聯想到一大堆好吃的東西,對吧!

不過今天介紹的其實不是像大閘蟹或秋刀魚的海鮮,是口感綿密鬆甜,又暖呼呼的,號稱「千果之王」的——栗子!

秋天,也該是栗子的季節。圖/by Nayuta @pixabay

栗子背景小檔案

大家平常看到的栗子,不外乎就是小攤販賣的一顆一顆的糖炒栗子,或是超市中盒裝販賣的栗子,不太有機會看見栗子經過處理前到底長什麼樣子。

我們平常說的栗子,其實來自於一種叫做「板栗」(Castanea mollissima) 的植物。有些人可能會認為我們平常看見那一顆一顆的栗子,就直接長在樹上,實際上,採收前長在樹上的板栗果實,長得跟我們日常生活中所看見的「栗子」可是大不相同喔!

-----廣告,請繼續往下閱讀-----
長在樹上的栗子。圖/by enriquelopezgarre@Pixabay

你可能會想,這個長的跟海膽有點像的東西到底是什麼構造?是果皮嗎?所以栗子到底又是什麼構造?

其實,板栗是「殼斗科」的植物,而殼斗科顧名思義就是「有殼」,對吧!那一層看起來有好多好多刺的外殼,其實就是它的殼斗喔!

有些人可能會對殼斗這個名詞非常陌生,但其實殼斗科的植物大家一定不陌生,比如說,冰原歷險記中,那顆劍齒松鼠不斷想要拿到手的橡實,就是殼斗科的果實喔!

冰原歷險記中,鼠奎特 (Scrat) 永遠拿不到手的橡實,就是殼斗科的果實喔!圖/ice age movies

大家應該都有學過,有些植物會長出特化的葉子,而我們將這種特化的葉子稱為「苞片」。有些植物的苞片長得又大又鮮豔,其中,最經典的例子就是聖誕紅!聖誕紅鮮紅的苞片能夠吸引昆蟲來接近真正的花,幫助花粉傳遞;同時,為了吸引昆蟲,許多植物開花時會讓它的小花有特殊的排列,看起來又大又漂亮,這種時候,我們就稱這些小花為「花序」;但有些植物,有著保護一整個花序的苞片,這時候,我們就稱它「總苞」。

-----廣告,請繼續往下閱讀-----

不過,講這麼多,它究竟和栗子有什麼關係啊?其實,殼斗科的「殼斗」,就是由雌花總苞發育而成的木質化構造喔!

而板栗在成熟後,殼斗就會十字形裂開,裂成四瓣,露出裡面的三顆栗子。

圖/ jacqueline macou@Pixabay

說到栗子的味道,通常都是想到糖炒栗子的味道,感覺又香、又可口、又甜潤。不過偷偷告訴你們,栗子花的味道可就不那麼令人香甜可口了。

栗子花的味道有一股又濃郁卻又難以言喻的特殊氣味,其實,說得更簡單一點,它聞起來像「嘉明的味道」。對,你想的沒錯,就是精液的味道。雖然成分完全不一樣,但是卻讓人不由自主地想到同一個方向,實際上,醫學上也直接用栗子花散發的味道來形容男性的精液。

-----廣告,請繼續往下閱讀-----

不過就算是這樣,糖炒栗子的香味還是非常美好的啊!請大家繼續對栗子抱持著食慾吧!

板栗花。圖/Kplant

栗子到底是什麼部位啊?

看完上面的介紹後,有個疑問還是沒被解答到:「栗子到底是果實還是種子啊?」

其實答案是——都是,它是果實,也是種子。

先別急,待我為你好好解釋一番。

-----廣告,請繼續往下閱讀-----
板栗的板栗的剖面圖。圖/Donis-González, I. R. (2008)(翻譯/邱彥寧)

相信有吃過糖炒栗子的朋友們,剝開堅硬的外殼,還會發現裡面還有一層苦苦的皮。

實際上,我們撥開的堅硬外殼就是栗子的「果皮」,那層苦苦的皮,就是「種皮」。

由於板栗是雙子葉植物,而雙子葉植物的種子儲存營養的地方是子葉,所以我們吃的部分則是並不是果肉,而是栗子的子葉還有胚軸的部分。

所以我才會說栗子既是果實又是種子。如果是說包含深褐色堅硬外殼的果皮部分,就是果實;但如果是說剝開後,當然就是指種子啦!

-----廣告,請繼續往下閱讀-----

蹦!你知道栗子其實是會爆炸的嗎?

糖炒栗子香甜綿密誘人,但你知道它其實有可能會爆炸嗎?圖/by_Alicja_Pixabay

你知道想吃糖炒栗子,可是需要經過兩個爆炸關卡的!

第一個關卡:料理的時候。

其實料理栗子時,不管是用烤的或是微波的,都可能都會爆炸!

原理其實不難,是因為栗子畢竟還是一個封閉的果實,而殼內的栗仁也含有水分,加熱時自然而然就會產生水蒸氣,但當溫度迅速升高,水蒸氣迅速增加,如果封閉的栗子殼受不了裡面過大的壓力,就會爆炸了。

所以,自己在家料理的時候,最好還是讓每個栗子都有個切口,可以排出水蒸氣喔!

-----廣告,請繼續往下閱讀-----

你可能會想說,那那些糖炒栗子的攤販呢?他們不也是讓栗子的溫度迅速升高了嗎?嘿嘿,這就是為什麼在製作糖炒栗子時,要把栗子和許多小石頭一起炒啦!

攤販在製作糖炒栗子時,會一直將栗子上下翻動,而待在上層的栗子就會與室溫接觸,所以能降溫,不用有切口也能將栗子給炒熟。同時,小石頭能夠讓栗子非常均勻的受熱,不用過高的溫度也能慢慢把栗子蒸熟。

不過你以為你石頭的妙用就只有如此嗎?不,還遠遠不止呢!

栗子不算是很小顆的東西,如果直接炒,每顆栗子之間的空隙很大,熱傳導就相對慢上許多。石頭的體積比栗子小很多,能填滿栗子間的空隙,使得加熱效率提高許多。

-----廣告,請繼續往下閱讀-----

栗子料理完成後,就是第二個關卡:剛加熱好時。

其實只要注意,千萬要等放涼一陣子再吃糖炒栗子啊!如同剛剛前面所說的,栗子裡面有一定的壓力,如果想使用牙齒將剛炒好的糖炒栗子咬出一條縫來,或是想要剝開它,用力壓迫到栗子裡的空間,栗子殼支撐不了壓力,一樣會爆炸的!

實際上,不少夜市裡的攤販也都會提醒大家千萬要等放涼一陣子再吃喔!下次吃栗子時記得千萬要注意啊!

不過在看完這些栗子小知識後,有沒有燃起了想吃糖炒栗子的慾望呢?各位有志一同愛著栗子的同胞們,趕快手刀出門購買,在食慾之秋好好滿足自己吧!

  1. 生態通—櫟櫟皆辛苦-殼斗科
  2. 維基百科:苞片
  3. Donis-González, I. R. (2008). Management of microbial decay of fresh and peeled chestnuts in Michigan. Michigan State University. Plant Pathology. Available from: https://www.researchgate.net/figure/Chestnut-fruit-morphology-A-Chestnut-fruit-longitudinal-cut-B-Spiny-burr-attached-to_fig16_265221329 [accessed 22 Nov, 2019]
  4. 黑胡桃網路閣—栗子解剖
  5. 每日頭條:地上的栗子不要亂吃,小心一命嗚呼
  6. 科技大觀園流體化技術:流體化床燃燒爐–由糖炒栗子談起
  7. 每日頭條:小心!用烤箱做糖炒栗子易爆炸 告訴你防炸小妙招

十一月專題【食慾之秋】天冷了,來點好吃的吧!

終於走過嚴厲的夏天,時序漸漸邁入秋高氣爽、食慾大開的時節。究竟秋天這個季節有什麼特別之處嗎?我們筷下的食物裡又有哪些科學事呢?

接下來每個小周末與周末晚間,與我們一同歡慶豐收季節,一起享用「食慾之秋」吧!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
彥寧
7 篇文章 ・ 1 位粉絲
比起鯛魚燒,我更喜歡章魚燒。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。