0

0
0

文字

分享

0
0
0

對細菌的「要你命三千」!光水離子化(PHI)技術到底厲害在哪?

PanSci_96
・2016/12/16 ・2994字 ・閱讀時間約 6 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

maxresdefault
星爺電影中,聞西把各種武器像串粽子串在一起,終究是沒辦法做出超級武器霸王。但在面對微生物的戰場上這樣做如何呢?圖/擷取自 Youtube

「我花了畢生精力集合十種殺人武器於一身的超級武器霸王,終於讓我研究成功了」

「每一樣武器都能獨當一面!現在聚在一起,看你怕不怕!」

空氣中除了你不喜歡的氣味,還漂浮著許多肉眼看不見的細菌,再厲害的功夫高手也無法當成蒼蠅一樣,用筷子夾下來。「殺菌」兩個字說來簡單,其實科學得不得了。空氣清淨的兩大訴求:「去味」、「抑菌」

空氣清淨機大多追求的目的無非是「去味」和「抑菌」:去味大多指的是處理揮發性有機物或是粒狀污染物,而抑菌則是處理生物污染源。光水離子化則是奠基於高級氧化法的一種淨化空氣新型技術,要了解光水離子化,就要先懂什麼是「高級氧化法」!

高級氧化法在食品消毒、食品包裝材料殺菌,或是廢水處理上都有其應用,它指的是利用化學、物理、生物等複合方式,使水中的污染物轉化為容易生物降解的小分子物質,或是讓有機分子轉化為 CO2 和 H2O 及其它無機物。其技術包含多種處理污染物的方法,像是光化學催化氧化法、濕式催化氧化法、超臨界水氧化法、臭氧類氧化法、電化學氧化法及超聲氧化法等等 [8],如果要一個一個解釋完的話,可能 2050 年都結束了,因此等等會先就 PHI 會利用到的核心技術做介紹。

用洗的不夠乾淨,還有更好的方法嗎?

讓我們先想想,當東西髒髒的時候,你最直接最簡單的做法是什麼?讓浣熊告訴你答案:拿去洗。

-----廣告,請繼續往下閱讀-----

https://www.youtube.com/watch?v=1VTNF3zGTtg

像是我們吃的食物,為了避免一些像是細菌性食物中毒的可能,通常在下廚之前都會先沖洗蔬果跟食材的表面,清洗掉來自於農地、加工廠,甚至家畜動物所產生的污染物和微生物。雖然靠清水沖洗可以清除大部分的髒東西和壞東西,但這還遠遠不夠:有沒有方法可以更進一步殺死那些洗不掉的病原體呢?

不只有食物表面,我們生活的環境也都有可能會附著一些有害的微生物(如細菌、病毒等)。很久以前,人們就知道太陽光裡的紫外線(ultraviolet ray / UV)能殺死許多空氣和附著在物體表面的微生物 [1, 2];這也就是為什麼有些廚房會在沒開店時開啟紫外線光殺菌,或是農曆年前家家戶戶都會拿棉被出來曬曬的原因。

紫外線波長介於 10 mn ~ 400 nm 之間,波長較短,能量和穿透力強,因此在紫外線照射下能破壞微生物的 DNA(脱氧核醣核酸,deoxyribonucleic acid)跟 RNA(核糖核酸,Ribonucleic acid)。像是大腸桿菌(Escherichia coli O157:H7)、李斯特菌(Listeria monocytogenes)等對人體有害的微生物,都能用紫外線來解決 [3]。

-----廣告,請繼續往下閱讀-----

高級氧化法:用複合的方式處理污染物

%e6%b0%a7%e5%8c%96%e6%b3%95

除了紫外線能殺菌之外,也有科學家開始思考:能不能利用紫外線光激發特定物質,產生臭氧(Ozone / O3)來消滅細菌?如果可以的話,殺菌效果不就更顯著?當短波長的 UV 光照射氧氣分子(O2)後,會產生一連串化學反應,形成臭氧(O2→→O3)。而後科學家也發現,當 UV 照射在特定金屬(如:二氧化鈦 / TiO/ titanium dioxide)時,會在 TiO分子裡產生電子-電洞配對(e electron−hole pairs (e− / h+)),多餘的電子會讓週邊的氧氣和臭氧分子形成帶負電的氧分子群(O3, O2),咱們來看看圖示(如圖一)[4 – 7]。

%e5%9c%96%e4%b8%80%e8%a7%a3%e9%87%8b
圖一。點擊看大圖。

如同圖一所示,臭氧若接觸到水分子(空氣中的水氣、食物表面上的水分),在 UV 激發之下皆會產生多種的高度活性氧分子群(如:OH•, •O2, H2O• 等),進而殺死鄰近的微生物,達到消毒的效果。另一方面,也可以分解有機分子,而可消除異味。同時臭氧分子在水中也會自然地分解,變成帶有電荷的 HO2+H3O+ [4 – 7]。

%e5%9c%96%e4%ba%8c%e8%a7%a3%e9%87%8b

上頭這種利用 UV、金屬催化劑(如:二氧化鈦 Titanium dioxide / TiO2)和水分子來產生臭氧、多種高度活性氧分子群,和帶有電荷的分子的方法,被稱為高級氧化法(Advanced oxidation processes / AOPs)。

把好幾種殺菌法都摻在一起,能得出超級武器嗎?

光水離子化(PhotohydroionizationTM (PHI))技術由 RGF 公司(RGF Environmental Group Inc.)註冊,是將高級氧化法延伸發展利用的一種方式。

-----廣告,請繼續往下閱讀-----

接下來就是關鍵:想要消滅水中的細菌和有機分子,可以靠高級氧化法,但如果是在空氣中呢?光水離子化就是為了這目的而發展出的延伸利用。

光水離子化殺菌的原理大致和高級氧化法相同,但因為它的目的是在於處理空氣裡的細菌和有氣味的有機分子,而高級氧化法需要在水溶液當中進行,因此光水離子化另加了親水性的物質,像是矽膠(二氧化矽),來吸收大氣中的水分,以解決空氣中能利用的水分不足的問題,提升高級氧化法的效率。另外,臭氧雖然可以殺菌,但溢出對人體也會有傷害,為避免臭氧溢出傷害人體,PHI 技術用波長 254 nm 的紫外光消除臭氧。

在殺菌方面,除了產生高度活性氧分子群能殺死空氣中的微生物之外,帶有電荷的分子也能吸附在空氣中的微粒表面,利用電荷相吸的原理聚集空氣中的微粒,使其巨大化並沉降,這樣也能達到空氣淨化的目的 [ 註 1 ] [ 註 2 ]。

市面上的空氣清淨機常看到是用「過濾網」來降低空氣中的污染物,如果想要有抑菌效果的話,則還需要檢視是否有「光觸媒」或是「紫外線」等技術,而濾網清淨機最大的問題在於,若不常常更換就會失去它原本的效用,還有可能造成二次汙染;相較之下,光水離子化技術是透過電荷相吸原理讓空氣中的微粒沉降,同時利用臭氧和多種高度活性氧分子群,來分解空氣中的有機分子和破壞微生物,達到去味殺菌、空氣淨化等效果,儘管持續力較強,光水離子化技術降低空氣污染物的效率就沒那麼快了。

-----廣告,請繼續往下閱讀-----

星爺電影中,聞西把各種武器像串粽子串在一起,終究是沒辦法做出超級武器霸王。但在面對微生物的戰場上,透過高級氧化法延伸出的光水離子化法,結合紫外線、臭氧、高活性氧分子群、與微粒沈降等多種方式,有效殺菌去味,成為空氣清淨技術的新選項。如果其實你也想搞明白自家的空氣清淨機到底用得是哪一種技術,效果如何,與其直接聽賣場人員吆喝,不如自個做些功課,從空氣清淨的各種技術開始了解吧!

本文由 O.verna 委託,泛科學規劃執行

註 1:資料來自於 RGF 公司專利-發明人:Ronald G. Fink, Walter B. Ellis. 權利人:Rgf Environmental Group, Inc. 專利名:Device, system and method for an advanced oxidation process using photohydroionization. 專利號碼:US 7988923 B2

註 2:本文章所參考之文獻 1 ~ 7,經檢閱後皆和 RGF 公司無關。若想參考 RGF 公司所開發之技術的應用研究(如火雞和起司的消毒),請參考附錄。

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. 林志隆 (2006) 看不見的光–紫外線。科學大觀園
  2. 葉純宜、林明瀅、陳小妮、王復德 (2005) 紫外線殺菌效能探討。感染控制雜誌,第15卷,第5期
  3. Soo-Ji Kim, Do-Kyun Kim, Dong-Hyun Kang (2016) Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese. Applied and Environmental Microbiology. 82, 11-17
  4. Haihan Chen, Charith E. Nanayakkara, Vicki H. Grassian (2012) Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 112, 5919-5948
  5. M.A. KHADRE, A.E. YOUSEF, J.-G. KIM (2001) Microbiological Aspects of Ozone Applications in Food: A Review. JOURNAL OF FOOD SCIENCE, 66, 1242-1252
  6. Mehmet Kurtulus Cem Sen (2013) Effect of photocatalytic oxidation on aerobic bacteria counts of broiler carcass. Journal of Animal and Veterinary Advances, 12, 1390-1394
  7. Margareta Eriksson (2005) Ozone chemistry in aqueous solution-Ozone decomposition and stabilisation, Department of Chemistry Royal Institute of Technology Stockholm, Sweden
  8. 李中光,劉新校,陳昱峰,吳孟昌,劉佳雯 ,Fenton氧化法在處理生物難降解有機廢水上之應用。

附錄

  • Jasdeep K. Saini, James L. Marsden, Kelly J.K. Getty, Daniel Y.C. Fung (2014) Advanced Oxidation Technology with Photohydroionization as a Surface Treatment for Controlling Listeria monocytogenes on Stainless Steel Surfaces and Ready-to-Eat Cheese and Turkey, FOODBORNE PATHOGENS AND DISEASE, 11, 295-300
  • McKay, Krista Marie (2012) Efficacy of advanced oxidation technology and lactic acid wash for controlling Escherichia coli O157:H7 in bagged baby spinach. A thesis of master. Kansas State University
  • Saini, Jasdeep Kaur (2012) Control strategies for Listeria monocytogenes in ready-to-eat foods and on food contact surfaces. A thesis of master. Kansas State University

 

 

文章難易度
PanSci_96
1219 篇文章 ・ 2172 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
3

文字

分享

0
1
3
臺灣整體空氣品質有變好嗎?有,但還需要解決臭氧這個隱藏角色!
研之有物│中央研究院_96
・2022/09/15 ・4323字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

有變好,但還遠遠不夠好

空氣雖然平常摸不到也看不到,但是它大大影響我們的生存空間,例如每日上下班聞到的汽機車廢氣、巷口小吃店的油煙,以及其他隱藏在社區的 PM2.5 污染源等。這些年下來,臺灣整體的空氣品質是變好還是變壞?中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,請他深入談論空氣污染物 PM2.5 和臭氧的變化趨勢,以及都市區空氣品質的首要難題:「衍生型 PM2.5」。

臺灣的空氣品質到底有沒有進步?

2012 年 5 月,環境保護署發布「空氣品質標準修正草案」正式將 PM2.5 納入臺灣空氣品質管制,從圖表中可以看到,自 2012 年以來,PM2.5 的平均濃度的確有逐年降低的趨勢。

從數據來看,PM2.5 的平均濃度有逐年下降的趨勢,但是秋冬季節的污染衝擊依然顯著。圖中每個資料點代表一個月的平均值。圖/研之有物

PM2.5 除了逐年降低之外,大家也可以觀察到, PM2.5 其實有非常強的「季節性」。

-----廣告,請繼續往下閱讀-----

一般而言,秋天、冬天時,中西部大多位於中央山脈的背風面,風速微弱不易將污染物吹散,污染濃度相對高;反之春天、夏天時,因為擴散條件好,污染濃度就相對低。

因此,夏天時,臺灣各縣市的污染狀況差異不大,但一進入秋冬,污染濃度在空間分佈上就呈現出非常明顯的差異:中南部特別嚴重。

從數據來看,臺灣各縣市的能見度在夏天時差異不大,但是中南部在秋冬時的能見度仍然不佳。圖中每個資料點代表一個月的平均值。圖/研之有物

隨著時間推進,PM2.5 污染正在逐漸改善,但整體而言,污染情況還是很嚴重,尤以中南部更為嚴峻。我們可以說,臺灣空氣品質在眾人努力之下慢慢變好,但我們離好的空氣品質仍然有一段很遙遠的距離。

「在變好,可是遠遠不夠好」周崇光這麼說。

大家的濃度都在降,除了臭氧?

前面已提到 PM2.5 濃度逐年降低,其他空氣污染物諸如非甲烷碳氫化合物(NMHC)、氮氧化物(NOx)的數據都有逐年下降的趨勢,但臭氧(O3)一枝獨秀,不僅沒有變少,有時甚至還會有上升的跡象。

-----廣告,請繼續往下閱讀-----

這到底發生了什麼事?

從數據來看,空氣污染物例如非甲烷碳氫化合物(NMHC)、氮氧化物(NOx)都逐年降低,然而臭氧(O3)濃度卻沒有變少的趨勢。圖中每個資料點代表一個月的平均值,「12 移動平均」表示污染物在該年連續 12 個月的平均值。圖/研之有物

若想要了解箇中原因,我們必須回顧臭氧的形成機制,與都市的光化學煙霧(Photochemical smog)有關(見下圖)。

首先,氮氧化物(NOx)和揮發性有機化合物(VOCs),是形成臭氧(O3)的主要前驅物。

二氧化氮(NO2)在紫外線的照射下(hν 表示能量),會分解成一氧化氮(NO)和一顆氧原子(O),當這顆氧原子碰到氧氣(O2)時,就跑出臭氧(O3)。

-----廣告,請繼續往下閱讀-----

當揮發性有機化合物(VOCs)碰上氫氧自由基(OH·)時,會被氫氧自由基氧化形成有機過氧自由基(RO2·),有機過氧自由基隨後會氧化一氧化氮(NO),並使二氧化氮(NO2)再生回來,由此可在大氣中循環產生臭氧。

光化學煙霧是空氣污染物的混合物,是由氮氧化物(NOx)和揮發性有機化合物(VOCs)與陽光發生一系列反應而成,而臭氧(O3)就在反應路徑中不斷循環。圖/研之有物

等等,那臭氧持續上升的原因是?

雖然 NO2 被紫外線分解後會產生 NO 和 O3,要注意的是 NO 碰上 O3 時,又會反應為 NO2,於是 NO—NO2—O3 在大氣中保持著動態的平衡關係,因此當我們減少一氧化氮的污染時,上述的光化學平衡就會有利於增加臭氧的濃度。

而在過去這些年,我國的污染防制使得大氣中氮氧化物濃度一直在減少,一氧化氮也相應下降,當一氧化氮越來越少的時候,也越來越少的臭氧會被轉化成二氧化氮,使得累積在空氣中的臭氧變多了。

因此,我們在下圖可看到,代表臭氧的紅線上升了,而代表二氧化氮的綠線下降了。

-----廣告,請繼續往下閱讀-----
臺灣的污染防制使得大氣中氮氧化物濃度一直在減少,一氧化氮也就相應下降,當一氧化氮越來越少的時候,也表示越來越少的臭氧會被消耗轉化成二氧化氮,使得累積在空氣中的臭氧變多了。圖中每個資料點代表一個月的平均值,「12 移動平均」表示污染物在該年連續 12 個月的平均值。圖/研之有物

既然無論空氣品質變好或變壞,臭氧的濃度都很高,甚至都會變高,那麼研究人員到底該怎麼確認整體空氣品質真的有所改善?

周崇光指出,事實上,只要將「臭氧和二氧化氮的濃度加起來」,統合為「大氣氧化劑的濃度」,並和其他污染物進行比對,就可以從數據中確認:即使臭氧的濃度上升,但兩者總和的數據是減少的、空氣品質的確正在改善!不過還要更加努力才能克服上述的困境,進而成功降低大氣中臭氧的濃度。

衍生型 PM2.5:都市空氣品質的挑戰

我們總是用 PM2.5 來統稱粒徑小於或等於 2.5 微米的細懸浮微粒,用 PM10 統稱粒徑小於或等於 10 微米的懸浮微粒,也就是說,它指的是粒徑在某個尺寸內的粒子濃度。

然而,你有沒有想過,這些懸浮微粒到底包含了哪些東西呢?

-----廣告,請繼續往下閱讀-----

周崇光笑著說,「裡面五花八門,什麼怪東西都有啦!」,懸浮微粒的成分可是高達上百種呢!

臺灣的 PM2.5 組成非常複雜,像是海鹽、元素碳(也稱黑碳,EC)、硝酸離子(NO₃-)、硫酸離子(SO₄²-)、銨離子(NH4+)、重金屬、以及各式各樣的有機化合物等等,不同縣市的組成分布也有所差異。

比較中研院過去(2003-2009)與環保署最近(2017-2021)各自調查的 PM2.5 化學組成,近五年來雖然臺灣 PM2.5 整體濃度下降了,但是 PM2.5 主要的組成分布則沒有明顯改變。

中研院與環保署調查了臺灣 PM2.5 整體濃度與組成,圓餅圖中心為該地區的 PM2.5 平均值,近五年來,同一地區 PM2.5 整體濃度下降,但化學組成無明顯改變。圖/研之有物

周崇光提到,要解決臺灣的 PM2.5 空污問題,減少衍生型 PM2.5 才是主線!

與黑碳、海鹽這些直接來自大自然或人為產生的「原生」微粒不同,大部分硫酸鹽、硝酸鹽、銨鹽和有機微粒是在大氣中經過複雜化學反應「衍生」而成的,因此稱為「衍生型 PM2.5」。

衍生型微粒的生成,除了需要有特定的前驅氣體,例如:SO2 氧化後產生硫酸鹽、NO2 氧化後產生硝酸鹽,以及有機氣體氧化後產生有機微粒等;還需要有促成反應的大氣氧化劑,例如:臭氧(O3)和氫氧自由基。

-----廣告,請繼續往下閱讀-----

這顯示出臺灣的 PM2.5 跟臭氧是一體兩面的空污難題。

由於高濃度的衍生型 PM2.5 在人類肉眼來看宛若煙霧一般,再加上是由一系列光化學反應而成,因此又稱為光化學煙霧。

洛杉磯是受光化學煙霧汙染的著名案例,大英百科全書提到,光化學煙霧又可稱為洛杉磯煙霧(Los Angeles smog)。圖/photos_mweber

中研院團隊過去幾年持續在臺灣地區進行的 PM2.5 的化學特徵調查,研究顯示,衍生型 PM2.5 在細懸浮微粒污染中佔據了非常大的比例(>70%)。然而可惜的是,礙於儀器技術的關係,團隊無法在全臺灣遍布監測 PM2.5 成分的儀器。

若是想要將不同來源的 PM2.5 化學成分準確即時的分析出來,這樣的儀器造價不菲。因此周崇光表示,在光化學煙霧的議題上,大氣科學家的目標並非獲得長期連續的監測資料,而是在關鍵的幾個研究站中,致力於找出光化學煙霧的基礎理論架構和反應機制,並協助政府機關制定防制策略。

中研院 2019 年 3 月曾在高屏地區的都市區進行 PM2.5 的化學特徵調查,共取樣 8 個地點,平均結果如上圖。銨鹽、硝酸鹽、硫酸鹽和有機微粒這些衍生型 PM2.5 的比例佔了七成以上,可看到都市區的硝酸鹽和有機微粒的比例有明顯增加。圖/研之有物

就在臺中!全臺第一座都市空氣污染研究站

為了釐清城市臭氧和 PM2.5 濃度變異的物理化學機制,中央研究院環變中心底下的空氣品質專題中心於 2021 年底,在臺中建立了全臺第一座整合都市氣象學和大氣化學的研究站,是國內目前最完整的大氣物理化學監測站。

-----廣告,請繼續往下閱讀-----

在這個研究站中,大氣科學家除了可以即時監測 PM2.5 的濃度,也可以掌握懸浮微粒的化學成分,包括量測揮發性有機物、二氧化氮、二氧化硫、一氧化氮、臭氧等微粒前驅污染物的濃度變化,藉此釐清都市空品的關鍵因子,協助研擬污染防制策略。

然而,為什麼要將研究站設立在臺中呢?周崇光表示,「無論是人口、能源、地理位置,還是大氣科學的角度,臺中均有著特殊的價值和意義」。

在空氣品質不佳的中西部之中,臺中不僅是人口數最多的都市,地理位置也讓臺中的邊界層條件具有相當高的複雜性,若能破解臺中盆地大氣環流的詳細機制,將對都市氣象學帶來可觀的突破,而臺中火力發電廠的污染和牽涉的能源議題,更是國內社會相當關注的重要焦點,因此,中研院空品專題中心最終決定將研究站設立於臺中。

中研院空品專題中心預計在三年後(2025 年),於臺中研究站取得第一階段的經驗和資料,隨後延伸應用至臺灣的其他城市,希望能透過學術研究與各單位協作逐步解決都市空氣品質的問題,突破當前空氣污染防制的瓶頸。

中央研究院空氣品質專題中心於 2021 年底,在臺中建立了全臺第一座都市空氣污染研究站,希望找出臺灣都市區空氣品質的關鍵因子。圖/周崇光
研之有物│中央研究院_96
296 篇文章 ・ 3393 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

26
2

文字

分享

1
26
2
《比宇宙更遠的地方》及其背後的科學——你不可不知的科幻動畫(一)
科學大抖宅_96
・2021/07/31 ・3920字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

我們距離宇宙有多遠?如果你開車往正上方的天空行駛,以高速公路的行車速度,一個小時就能抵達外太空。

大氣層與外太空的分界線,目前並沒有全球統一的認定標準。國際航空聯盟(Fédération Aéronautique Internationale, FAI)將其定為海平面上方 100 公里處;美國空軍、以及美國國家航空暨太空總署(NASA)則以海拔 80 公里為交界——這麼近的距離,根本簡簡單單開車就到了呀!(不要瞎掰好嗎)

相較於宇宙的近,南極雖然在地球上,但是對絕大多數人來說,距離卻相當遙遠。2007 年,日本前太空人毛利衛被招待至南極的昭和基地後,講了句感想:「只要數分鐘就能抵達宇宙,到昭和基地卻要花數天;簡直比宇宙還要遠呢。」《比宇宙更遠的地方》(宇宙よりも遠い場所)這部動畫作品,描述的就是一群高中女學生努力突破現實困難,來到比宇宙更遠的地方——南極的故事。

《比宇宙更遠的地方》宣傳照。

(以下微科學劇情雷)

-----廣告,請繼續往下閱讀-----

日本的南極觀測任務

《比宇宙更遠的地方》並不是刻板印象中的科幻片,劇情中沒有機器人、沒有太空船,也沒有外星人或宇宙基地;但它確實是有著紮實科學背景設定的幻想故事。主角們搭乘的破冰船企鵝饅頭號,設定上為退役的日本碎冰艦第二代「白瀨」(しらせ)改造而成;實際上,這艘日文名字發音跟主角之一相同的船,現今仍在服役,支援著日本的南極觀測任務。

現實世界的第二代白瀨。圖/wikipedia

至於動畫中,位於南極的昭和基地,也是完全參考自現實世界的昭和基地;其於 1957 年開設,目前仍為日本在南極的主要觀測基地。與劇情類似,南極地域觀測隊會不時跟日本當地,如博物館和各級學校等單位,進行衛星連線科普活動。以年為單位,每個梯次的觀測隊員約在百名以下,包括公家機關成員,以及民間專業人員;其中又區分成在南極待上一整年、每年二月交接的越冬隊,和只駐紮夏天期間的夏隊,以及少數的同行者(如記者、外國科學家、大學生等)。

可惜的是,到目前為止,南極地域觀測隊從來沒有女高中生參與;最年輕的成員為大學生。過去,女性觀測隊員鳳毛麟角,近年才有逐漸增加的趨勢,最多可達十幾人;而且,一直要到 2018 年,才首度有女性擔任隊長職務。在《比宇宙更遠的地方》裡,重要幹部/角色幾乎都是女性,一方面或許是為了跟主角們的性別身份呼應;另一方面,可能也是一種期許吧?

現實中的昭和基地看板。圖/wikipedia

南極的天文台

在動畫劇情中,觀測隊的重要目標,乃在南極內陸建立天文台;而現實世界裡,日本目前並沒有這樣的計畫,但確實有透過國際合作架設天文台的未來展望。

-----廣告,請繼續往下閱讀-----

現在於南極洲運作的天文望遠鏡,最有名的當屬美國阿蒙森–斯科特南極站(Amundsen-Scott South Pole Station)的南極望遠鏡(South Pole Telescope, SPT);它位於地理南極、海拔 2800 公尺的高原上,口徑 10 公尺,可觀測的電磁波段包括了微波、毫米/次毫米波,也是事件視界望遠鏡的參與機構之一。事件視界望遠鏡是全球性的大型望遠鏡陣列計畫,協調世界各地電波望遠鏡獨立觀測特定目標,再將數據整合,形成口徑等同地球一樣大的虛擬望遠鏡。2019 年事件視界望遠鏡所發布,轟動全球的超大質量黑洞 M87 觀測照片,即有來自南極望遠鏡的貢獻。

南極望遠鏡。圖/wikipedia

為什麼選擇在南極內陸進行天文觀測?

為什麼在南極建立天文台這麼重要呢?要做,在自己國家做不就好了嗎?《比宇宙更遠的地方》又為何要設定成,去南極內陸建天文台,而非建在靠海的昭和基地?事實上,位處南極洲中央的南極高原,擁有其他地方無可比擬的天文觀測優勢

因為空氣中的水分子會吸收電磁波(程度依波段而異),所以觀測某些特定電磁波段的望遠鏡,必須建在特別乾燥的地方,避免觀測結果受到水氣影響。南極氣候嚴寒,空氣中的水份極少;加上內陸高原平均海拔 3000 公尺,空氣稀薄又乾淨――這些因素都讓南極內陸的天文觀測,可以最大程度地避免地球大氣層的干擾。

不僅如此,在地理南極附近,每年有六個月的永夜,星星亦不會東升西落――意味著,天文台可以不間斷地連續進行觀測、獲取數據,不會受到打擾。

-----廣告,請繼續往下閱讀-----
阿蒙森–斯科特南極站座落在地理南極(紅線圈起來處);右上方黑框處可見昭和基地(Syowa)。圖/Wikipedia

南極的科學研究

不只黑洞觀測,南極的許多科學研究計畫都得到豐碩成果。1982 年,日本在昭和基地的越冬隊發現,南極上空的臭氧隨時間快速減少,甚至一度懷疑儀器出了問題。兩年後,觀測隊成員在研討會中發表調查結果,成為史上第一份南極臭氧層破洞的報告;《蒙特婁議定書》也才因此誕生,要求禁用氟氯碳化物等破壞臭氧層的化學物質。

臭氧層破洞的發現,於劇中(右上畫面)也有交代。圖/twitter

除了大氣層臭氧濃度的變化之外,南極也對我們理解遙遠過去的地球氣候貢獻卓著。眾所周知,南極大陸地表覆蓋著深厚的冰層,最厚處甚至超過 4 公里;它們是在漫長的歲月之中,逐漸堆積形成。換言之,在冰層的越深處,年代越久遠。藉由挖掘深層的冰柱樣本(稱為冰核,Ice Core),科學家就能分析出隱藏在冰裡的昔日氣候資訊,如當時氣溫和大氣的二氧化碳濃度等。目前人類挖出的冰核,最深超過三公里,可回溯至接近八十萬年前。

挖掘冰核的過程,以及冰核照片。圖/Nasa Earth Observatory

作為人類最後才踏足的大陸,南極帶給我們許多科研調查上的驚喜。至 2016 年為止,美國在南極找到約 22000 顆隕石,日本也回收超過 17000 塊隕石,對地質學研究貢獻甚鉅。在生命科學,如生態系觀察、環境污染調查、南極湖底苔蘚植被的發現等等,皆不容小覷。在物理學,目前有微中子(質量極小又難以和其他物質作用的次原子粒子)的大型觀測計畫正在進行。除了上述議題之外,還有其他諸多研究領域或主題,也在南極展開。

至於台灣,雖然本身並沒有南極的研究站,但科研人員可藉由跨國合作前往南極進行研究;如中央大學太空科學與工程學系的林映岑老師,就曾前往南極長駐一年,是目前國內唯一擁有南極研究經驗的女性科學家。此外,台灣也有為南極的部分研究設施貢獻過心力,像是事件視界望遠鏡的調校、台大物理系暨天文物理所的陳丕燊老師推動的微中子天文台「天壇陣列」(Askaryan Radio Array, ARA)等。

-----廣告,請繼續往下閱讀-----

一起去南極吧!

植基於現實中的南極科學考察活動,《比宇宙更遠的地方》以四位女高中生為主角,展開她們青春的一頁。主角們在破冰船上、在南極的生活種種,都顯示出動畫製作公司花了相當大的心力,做足功課,才能有如此忠實的呈現。

動畫中,科學性的設定不單是用來搭配全劇的布景,甚至也可以說是讓故事更顯真實的重要點綴:包括研究計畫可能面臨的人力、物力短缺,和計畫執行前的準備和訓練等,劇情中都有一定篇幅的交代。雖然就自己身為科學研究人員的角度來說,會覺得科學內容的說明太少,不夠過癮,但這畢竟是給大眾看的動畫――就科學調查活動的呈現、角色的塑造、以及劇情的娛樂性等不同面向,個人認為比例拿捏得很不錯。

以南極為目標的主角們,透過一次次的努力,克服困難,想方設法來到南極,還要面對許許多多人際關係的衝突與學習;隨著旅程的開始和結束,她們得到的不只是一段獨特的旅行經驗,也是每個人的成長,和彼此之間的友誼。《比宇宙更遠的地方》曾榮獲紐約時報「2018 年最優秀電視節目獎」;它沒有深奧難懂的設定、沒有燒腦的情節;以溫馨勵志的內容溫暖人心之餘,其細緻的南極生活刻畫,也讓人心神嚮往,恨不得親自去一趟南極了呢!

動畫中的破冰船,第二代白瀨。圖/IMDb

參考文獻

所有討論 1
科學大抖宅_96
36 篇文章 ・ 1729 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

5
0

文字

分享

0
5
0
封城不只防堵 COVID-19,也讓全球空氣污染迅速下降!
阿咏_96
・2021/07/02 ・1739字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

自 2020 年起,全世界有許多國家都實施了封城 (lockdown) 政策,目的是為了減緩 COVID-19 新型冠狀病毒的傳播,嚴格限制人員流動,導致經濟活動減少許多1,同時全球範圍內的空氣污染物排放量也隨之下降,但令人驚訝的是,全球對流層臭氧也在短時間內迅速減少。

封城使改善空污進度超前 15 年

根據 NASA 一項新研究2,COVID-19 冠狀病毒流行造成 2020 年初全球商業活動大幅減少,在 2020 年 4 月至 5 月間,全球氮氧化物 (NOX ) 的人為排放量下降了 15% ,而在區域範圍內的排放量約下降 18% 至 25%。由於氮氧化物排放量的減少,截至 2020 年 6 月,全球對流層臭氧總負擔下降了 2% ,是政策制定者認為透過法規制定等常規方式,實施至少需 15 年才能達到的標準。

看到這邊,大家可能會好奇:臭氧會對我們造成什麼危害呢?

通常我們知道的臭氧,是位於平流層臭氧濃度較高的一部分,能夠吸收短波紫外線的「臭氧層」;但若是位於對流層的臭氧,對人體而言便是一種汙染物,根據 2019 年《全球健康報告》3的統計指出,全世界因長期暴露於地面臭氧而導致死亡的人數約 365,000 人。

2019 年臭氧造成的死亡人數。圖 / Health Impacts of Ozone

那氮氧化物排放和對流層臭氧有什麼關係呢?

這就要從對流層中的臭氧是怎麼來的講起。通常我們說的平流層臭氧來自於紫外線的照射將氧分子光解成氧原子,再與氧原子結合而成;但對流層中短波紫外線較微弱,主要是含有氮氧化物 (NOX ) 、一氧化碳 (CO) 和揮發性有機化合物 (volatile organic compounds , 簡稱VOCs) 的空氣受到日光照射後,由二氧化氮 (NO2) 光解後產生的氧原子,再與氧分子結合形成4

-----廣告,請繼續往下閱讀-----

人類活動中的汽機車引擎、工廠排放等,都會產生大量一氧化氮 (NO) 和二氧化氮 (NO2),大部分的一氧化氮 (NO) 也會迅速氧化成二氧化氮 (NO2),間接造成對流層臭氧濃度上升,而揮發性有機化合物 (VOCs) 則會加強這個過程5,因此,將氮氧化物及揮發性有機化合物 (VOCs) 稱為「臭氧前驅物 (ozone precursors) 」。

氮氧化物、揮發性有機化合物皆都和臭氧形成有關。 圖 / 行政院環境保護署

從衛星監測 COVID-19 時期全球臭氧變化

這次的研究由 NASA 火箭噴射推進實驗室 (Jet Propulsion Laboratory) 帶領國際團隊進行,他們使用五顆分別來自 NASA 及 ESA(歐洲太空總署)的衛星,觀測氮氧化物、臭氧及其他大氣氣體的結果,並利用數據分析系統將觀測結果輸入氣象及大氣化學模型,他們發現模型中大氣的變化和衛星觀測結果大多一致。

此研究的作者說明,其實在 COVID-19 開始大流行的十年前,許多國家便已經實施環境政策,主要藉由改變人類活動及提高技術層面來減少空氣汙染物排放。然而,這些政策改變大氣成分的效益往往難以量化,因為除了會造成空汙排放的因素外,像是氣候條件、大氣化學等背景狀態等,都會影響數據,得到的結果難以排除長期背景因素造成的變化。

然而,COVID-19 時期在排放量變化的速度和幅度是很特殊的,而且這些變化發生在短時間內,能夠讓科學家以較穩定、一致的尺度來觀測結果,讓我們了解:人類活動及空氣污染物排放大量減少的情況下,大氣成分會有什麼樣的變化。研究者也表示,分析 COVID-19 封城時期的大氣變化目的在於,為未來環境政策制定提供科學依據。

-----廣告,請繼續往下閱讀-----

此外,因氮氧化物排放與臭氧含量的關係並非線性,各國家、城市的情況也不大相同,環境政策決策者需要考慮空氣污染物排放及大氣成分之間的複雜關係,這個研究提供了全球範圍的大氣變化評估,未來希望能夠再分析到更精細的尺度變化。

參考資料

  1. Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., … & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400.
  2. Miyazaki, K., Bowman, K., Sekiya, T., Takigawa, M., Neu, J. L., Sudo, K., … & Eskes, H. (2021). Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns. Science Advances, 7(24), eabf7460.
  3. Health Impacts of Ozone
  4. Crutzen, P. J. (1974). Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus, 26(1-2), 47-57.
  5. 科學Online 好臭氧vs.壞臭氧
阿咏_96
12 篇文章 ・ 655 位粉絲
You can be the change you want to see in the world.