網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

對細菌的「要你命三千」!光水離子化(PHI)技術到底厲害在哪?

PanSci_96
・2016/12/16 ・2994字 ・閱讀時間約 6 分鐘 ・SR值 502 ・六年級
maxresdefault
星爺電影中,聞西把各種武器像串粽子串在一起,終究是沒辦法做出超級武器霸王。但在面對微生物的戰場上這樣做如何呢?圖/擷取自 Youtube

「我花了畢生精力集合十種殺人武器於一身的超級武器霸王,終於讓我研究成功了」

「每一樣武器都能獨當一面!現在聚在一起,看你怕不怕!」

空氣中除了你不喜歡的氣味,還漂浮著許多肉眼看不見的細菌,再厲害的功夫高手也無法當成蒼蠅一樣,用筷子夾下來。「殺菌」兩個字說來簡單,其實科學得不得了。空氣清淨的兩大訴求:「去味」、「抑菌」

空氣清淨機大多追求的目的無非是「去味」和「抑菌」:去味大多指的是處理揮發性有機物或是粒狀污染物,而抑菌則是處理生物污染源。光水離子化則是奠基於高級氧化法的一種淨化空氣新型技術,要了解光水離子化,就要先懂什麼是「高級氧化法」!

高級氧化法在食品消毒、食品包裝材料殺菌,或是廢水處理上都有其應用,它指的是利用化學、物理、生物等複合方式,使水中的污染物轉化為容易生物降解的小分子物質,或是讓有機分子轉化為 CO2 和 H2O 及其它無機物。其技術包含多種處理污染物的方法,像是光化學催化氧化法、濕式催化氧化法、超臨界水氧化法、臭氧類氧化法、電化學氧化法及超聲氧化法等等 [8],如果要一個一個解釋完的話,可能 2050 年都結束了,因此等等會先就 PHI 會利用到的核心技術做介紹。

用洗的不夠乾淨,還有更好的方法嗎?

讓我們先想想,當東西髒髒的時候,你最直接最簡單的做法是什麼?讓浣熊告訴你答案:拿去洗。

https://www.youtube.com/watch?v=1VTNF3zGTtg

像是我們吃的食物,為了避免一些像是細菌性食物中毒的可能,通常在下廚之前都會先沖洗蔬果跟食材的表面,清洗掉來自於農地、加工廠,甚至家畜動物所產生的污染物和微生物。雖然靠清水沖洗可以清除大部分的髒東西和壞東西,但這還遠遠不夠:有沒有方法可以更進一步殺死那些洗不掉的病原體呢?

不只有食物表面,我們生活的環境也都有可能會附著一些有害的微生物(如細菌、病毒等)。很久以前,人們就知道太陽光裡的紫外線(ultraviolet ray / UV)能殺死許多空氣和附著在物體表面的微生物 [1, 2];這也就是為什麼有些廚房會在沒開店時開啟紫外線光殺菌,或是農曆年前家家戶戶都會拿棉被出來曬曬的原因。

紫外線波長介於 10 mn ~ 400 nm 之間,波長較短,能量和穿透力強,因此在紫外線照射下能破壞微生物的 DNA(脱氧核醣核酸,deoxyribonucleic acid)跟 RNA(核糖核酸,Ribonucleic acid)。像是大腸桿菌(Escherichia coli O157:H7)、李斯特菌(Listeria monocytogenes)等對人體有害的微生物,都能用紫外線來解決 [3]。

高級氧化法:用複合的方式處理污染物

%e6%b0%a7%e5%8c%96%e6%b3%95

除了紫外線能殺菌之外,也有科學家開始思考:能不能利用紫外線光激發特定物質,產生臭氧(Ozone / O3)來消滅細菌?如果可以的話,殺菌效果不就更顯著?當短波長的 UV 光照射氧氣分子(O2)後,會產生一連串化學反應,形成臭氧(O2→→O3)。而後科學家也發現,當 UV 照射在特定金屬(如:二氧化鈦 / TiO/ titanium dioxide)時,會在 TiO分子裡產生電子-電洞配對(e electron−hole pairs (e− / h+)),多餘的電子會讓週邊的氧氣和臭氧分子形成帶負電的氧分子群(O3, O2),咱們來看看圖示(如圖一)[4 – 7]。

%e5%9c%96%e4%b8%80%e8%a7%a3%e9%87%8b
圖一。點擊看大圖。

如同圖一所示,臭氧若接觸到水分子(空氣中的水氣、食物表面上的水分),在 UV 激發之下皆會產生多種的高度活性氧分子群(如:OH•, •O2, H2O• 等),進而殺死鄰近的微生物,達到消毒的效果。另一方面,也可以分解有機分子,而可消除異味。同時臭氧分子在水中也會自然地分解,變成帶有電荷的 HO2+H3O+ [4 – 7]。

%e5%9c%96%e4%ba%8c%e8%a7%a3%e9%87%8b

上頭這種利用 UV、金屬催化劑(如:二氧化鈦 Titanium dioxide / TiO2)和水分子來產生臭氧、多種高度活性氧分子群,和帶有電荷的分子的方法,被稱為高級氧化法(Advanced oxidation processes / AOPs)。

把好幾種殺菌法都摻在一起,能得出超級武器嗎?

光水離子化(PhotohydroionizationTM (PHI))技術由 RGF 公司(RGF Environmental Group Inc.)註冊,是將高級氧化法延伸發展利用的一種方式。

接下來就是關鍵:想要消滅水中的細菌和有機分子,可以靠高級氧化法,但如果是在空氣中呢?光水離子化就是為了這目的而發展出的延伸利用。

光水離子化殺菌的原理大致和高級氧化法相同,但因為它的目的是在於處理空氣裡的細菌和有氣味的有機分子,而高級氧化法需要在水溶液當中進行,因此光水離子化另加了親水性的物質,像是矽膠(二氧化矽),來吸收大氣中的水分,以解決空氣中能利用的水分不足的問題,提升高級氧化法的效率。另外,臭氧雖然可以殺菌,但溢出對人體也會有傷害,為避免臭氧溢出傷害人體,PHI 技術用波長 254 nm 的紫外光消除臭氧。

在殺菌方面,除了產生高度活性氧分子群能殺死空氣中的微生物之外,帶有電荷的分子也能吸附在空氣中的微粒表面,利用電荷相吸的原理聚集空氣中的微粒,使其巨大化並沉降,這樣也能達到空氣淨化的目的 [ 註 1 ] [ 註 2 ]。

市面上的空氣清淨機常看到是用「過濾網」來降低空氣中的污染物,如果想要有抑菌效果的話,則還需要檢視是否有「光觸媒」或是「紫外線」等技術,而濾網清淨機最大的問題在於,若不常常更換就會失去它原本的效用,還有可能造成二次汙染;相較之下,光水離子化技術是透過電荷相吸原理讓空氣中的微粒沉降,同時利用臭氧和多種高度活性氧分子群,來分解空氣中的有機分子和破壞微生物,達到去味殺菌、空氣淨化等效果,儘管持續力較強,光水離子化技術降低空氣污染物的效率就沒那麼快了。

星爺電影中,聞西把各種武器像串粽子串在一起,終究是沒辦法做出超級武器霸王。但在面對微生物的戰場上,透過高級氧化法延伸出的光水離子化法,結合紫外線、臭氧、高活性氧分子群、與微粒沈降等多種方式,有效殺菌去味,成為空氣清淨技術的新選項。如果其實你也想搞明白自家的空氣清淨機到底用得是哪一種技術,效果如何,與其直接聽賣場人員吆喝,不如自個做些功課,從空氣清淨的各種技術開始了解吧!

本文由 O.verna 委託,泛科學規劃執行

註 1:資料來自於 RGF 公司專利-發明人:Ronald G. Fink, Walter B. Ellis. 權利人:Rgf Environmental Group, Inc. 專利名:Device, system and method for an advanced oxidation process using photohydroionization. 專利號碼:US 7988923 B2

註 2:本文章所參考之文獻 1 ~ 7,經檢閱後皆和 RGF 公司無關。若想參考 RGF 公司所開發之技術的應用研究(如火雞和起司的消毒),請參考附錄。

參考文獻:

  1. 林志隆 (2006) 看不見的光–紫外線。科學大觀園
  2. 葉純宜、林明瀅、陳小妮、王復德 (2005) 紫外線殺菌效能探討。感染控制雜誌,第15卷,第5期
  3. Soo-Ji Kim, Do-Kyun Kim, Dong-Hyun Kang (2016) Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese. Applied and Environmental Microbiology. 82, 11-17
  4. Haihan Chen, Charith E. Nanayakkara, Vicki H. Grassian (2012) Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chem. Rev. 112, 5919-5948
  5. M.A. KHADRE, A.E. YOUSEF, J.-G. KIM (2001) Microbiological Aspects of Ozone Applications in Food: A Review. JOURNAL OF FOOD SCIENCE, 66, 1242-1252
  6. Mehmet Kurtulus Cem Sen (2013) Effect of photocatalytic oxidation on aerobic bacteria counts of broiler carcass. Journal of Animal and Veterinary Advances, 12, 1390-1394
  7. Margareta Eriksson (2005) Ozone chemistry in aqueous solution-Ozone decomposition and stabilisation, Department of Chemistry Royal Institute of Technology Stockholm, Sweden
  8. 李中光,劉新校,陳昱峰,吳孟昌,劉佳雯 ,Fenton氧化法在處理生物難降解有機廢水上之應用。

附錄

  • Jasdeep K. Saini, James L. Marsden, Kelly J.K. Getty, Daniel Y.C. Fung (2014) Advanced Oxidation Technology with Photohydroionization as a Surface Treatment for Controlling Listeria monocytogenes on Stainless Steel Surfaces and Ready-to-Eat Cheese and Turkey, FOODBORNE PATHOGENS AND DISEASE, 11, 295-300
  • McKay, Krista Marie (2012) Efficacy of advanced oxidation technology and lactic acid wash for controlling Escherichia coli O157:H7 in bagged baby spinach. A thesis of master. Kansas State University
  • Saini, Jasdeep Kaur (2012) Control strategies for Listeria monocytogenes in ready-to-eat foods and on food contact surfaces. A thesis of master. Kansas State University

 

 

文章難易度
PanSci_96
961 篇文章 ・ 318 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


0

10
5

文字

分享

0
10
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》