2011 年、中華民國建國百年,臺大天文物理研究所教授陳丕燊,率領「天壇陣列」(Askaryan Radio Array,ARA)微中子天文臺研究計畫團隊登上南極,此行目的是安裝由臺灣主導的 ARA 國際合作研究計畫第一座天線臺;這是中華民國百年來首次在南極進行的科學研究,正好遇上人類首次抵達南極點百年紀念,陳丕燊在那裡插上親自手繪的中華民國國旗,讓它飄揚在−40˚C 南極蒼穹下,寫下我國天文研究新頁。
然而,ANITA 計畫以熱氣球從空中偵測微中子訊號,易受雜訊干擾,且在南極氣候影響下,無法全年偵測;回臺後,陳丕燊將探測方式轉向地下,以便終年都可進行微中子訊號探測。目前這兩項研究都在進行中,ANITA 已成功執行三次飛行任務,預計 2016 年底將執行第四次任務(ANITA-IV);ARA也已完成三座天線站,其中兩座完全由臺大團隊打造的天線站架設,運行兩年半來從未故障,雖然離架設 37 座目標還有段距離,但陳丕燊認為,臺大團隊的表現在國際上有目共睹,已獲多方肯定。一心要把臺灣帶進宇宙學領域的陳丕燊,其實本來並非出身宇宙學;他自臺大物理系畢業,直至美國加州大學洛杉磯分校(UCLA)博士班,均攻讀高能物理;陳丕燊說,高能物理自二戰以來蓬勃發展,「當時最年輕有為的物理學者,幾乎都在鑽研高能物理」,他也不例外; 在UCLA 陳丕燊師承高能物理學大師櫻井純(J. J. Sakurai),並與指導教授共同發表四篇國際期刊,研究成績卓越。但是櫻井教授在他拿到學位前突然過世,帶給他極大衝擊,當時他讀到《科學》(Science)期刊一篇專欄〈高能物理的未來〉(The Future of High Energy Physics)文章提到,高能物理加速器機制若不改進,將來想提高能量,長度勢必無止盡增長,有朝一日恐怕得繞地球一周,才能蓋一個加速器。這個看法引發陳丕燊深刻的省思,他認為這個預測雖不中、亦不遠矣。看當前全世界唯一、最大的加速器在瑞士,圓周已達 27 公里,如果要再加高能量,勢必得再擴大半徑;而該文也提到,當時兩位科學家提出新加速機制,即結合電漿與高能物理,利用電漿(plasma)來加速粒子;先將雷射光打到電漿裡,讓電漿產生像波浪一樣的振盪,波浪會強行將電漿中的正負離子分離,而產生很強的電場,再打進高能粒子,透過電場讓粒子加速到很高能量。
在南極研究時,劉宗哲博士在研究基地附近拍攝到企鵝。圖/台大出版中心提供
這段敘述引發陳丕燊濃厚的興趣,他發現這兩位科學家之一恰是他統計力學教授 John M. Dawson;正有意轉換跑道的他,便迫不及待地前往請教,相談十多分鐘,Dawson 教授即熱情邀請他到自己研究室進行博士後研究。陳丕燊將信將疑,心想:Dawson 教授專精的是電漿物理,與自己鑽研的高能物理截然不同,他能做什麼?他委婉地報告Dawson 教授:「等離子、電漿物理跟我所學的完全不同,我不確定能不能勝任。」Dawson教授鼓勵他可以邊做邊學,「你既然是櫻井教授的學生,一定辦得到。」就這樣,陳丕燊抱持改良高能物理加速機制的熱忱,轉進電漿物理領域。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。