0

0
0

文字

分享

0
0
0

美國新總統川普該上的六堂科學課 (上)

鄭國威 Portnoy_96
・2016/10/28 ・3734字 ・閱讀時間約 7 分鐘 ・SR值 540 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

11/9更新:美國人民已經做出選擇,川普當選第四十五任美國總統,本文標題隨之更改。

美國第四十五屆新總統。圖/By Gage Skidmore, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17763607
美國第四十五屆新總統。圖/By Gage Skidmore, CC BY-SA 3.0, wikimedia commons.

編譯/鄭國威

總統通常不是科學家,但該不該有科學思維呢?自從開始經營 PanSci 之後,我才注意到美國的科學界在總統大選前都會積極地提出問題給總統候選人,要求表態回應。這次也不例外,包括民主黨的希拉蕊.柯林頓(Hillary Diane Rodham Clinton)、共和黨的唐納.川普(Donald John Trump)、綠黨的吉爾.史坦(Jill Ellen Stein)、以及自由人黨蓋瑞.強森(Gary Earl Johnson)都回應了 《美國科學人》(Scientific American )雜誌提出的 20 個科學治理問題

而雖然沒有直接替柯林頓背書,《美國科學人》卻史無前例地直接點名共和黨的川普(更新:也是總統當選人),認為他對科學毫不尊重的態度令人擔憂,基本上也等同於挺柯林頓了。除此之外,學術期刊《科學》另列出 6 門科學課,要下一任美國總統趕緊準備好,因為考驗就在眼前。其實這 6 門課也不是只是美國的問題,而是在台灣的我們也該密切注意的,這 6 門課如果要湊成六字訣,就是「疾」、「基」、「溢」、「痴」、「智」、「直」。很好背吧!在這篇我們就先來討論「疾」、「基」和「溢」!

第一堂課:疾疾,護法現身?

defense-1403072_640
圖/Pixabay

首先,「疾」指的就是「疾病」,而且是「疾速」演化的「疾病」。大家都知道,病原體病毒、細菌、真菌和寄生蟲等,無時無刻不在人、家畜、野生動物、樹木、農作物等宿主身上進行激烈的軍備競賽。壞消息是病原體的贏面比較大。這些病原體發展的速度有如猛踩油門,有時肇事逃逸無蹤、更可怕的是不時來個彎道超車,把宿主的防禦能力拋在後頭,成為我們身體裡的超級惡棍。像是大腸桿菌(Escherichia coli)可以在短短的 17 分鐘裡將自己的數量翻一番,我們開發新治療方法的速度實在看不到他們的尾燈。

其實就像《全境擴散》這部超寫實電影中所描繪的,可以抵抗所有抗生素的超級細菌,以及從蝙蝠、禽類、豬傳來的致命流感病毒,很可能在不遠的將來引發全球大流行,殺死百萬人。細菌甚至可以通過稱為「基因水平轉移」(horizontal gene transfer)的過程來與其他細菌交易基因,加速擴散抗藥性。在美國,每年有兩百萬人感染不怕抗生素的細菌,其中約 23000 人會因此喪生。

世界衛生組織 WHO 則估計,在 2015 年,有 58 萬個病例對兩種最強大的結核病用藥產生抗藥性,而瘧疾、愛滋病毒和其他重大疾病的抗藥性增加,更會嚴重打擊目前控制疫情蔓延的手段。而近年驟然躍上檯面的新威脅,如茲卡病毒跟伊波拉病毒,也會以我們難以預測的方式突襲。最後,有時候為了開發療法,科學家也得與危險的病原體共處,甚至透過基因工程創造新種,但如果意外發生或病原體故意被釋出,也可能造成難以想像的後果。(延伸閱讀:〈科學期刊該描述科學家是如何製造致命感冒病毒嗎?〉、〈科學家公布致命禽流感病毒株研究細節〉)

疾病沒有疆界,《科學》認為美國需要做好國際合作與協調的準備。疾病監測系統、診斷跟治療的工具都需要改進,但要找到金援來做這些事很難。政策要能確保研究致命病原體能在安全的環境,也別因為太過擔心而使必要的研究停擺。下一任美國總統還需要實現 2015 年推出的國家打擊抗藥性細菌行動計劃,以遏制醫療業和農業濫用抗生素。新政府也必須提供製藥公司開發新抗生素的誘因,來取代無效的藥物。

新總統川普,這就是你的第一堂課。

第二堂課:「基」不可失

「基」指的是「基因編輯」,也就是已經火速成為美劇主題的 C.R.I.S.P.R.基因編輯技術。這種技術可以更簡單、快速、便宜的方式來改變任何生物體的 DNA。

螢幕快照 2016-10-27 上午2.13.09
圖/Netflix 的漫威戲劇《盧克凱吉》。

CRISPR 技術除了對基礎研究是有用的工具以外,更能用來治療人類遺傳性疾病、創造產量更高的抗病蟲害農作物跟牲畜。但,就跟基因改造一樣,CRISPR 也可能引發倫理和監管問題。這項技術讓我們得以修改精子、卵子、與人類胚胎的基因,這意味著改變將傳遞給後代。而且,透過所謂的基因驅動(gene drive),CRISPR可以用於永久地改變整個物種的基因組,藉此改變其演化路徑和生態角色,甚至將其徹底終結。舉例來說,基因驅動可以幫瀕危物種提振繁殖能力,破壞雜草得以抵抗除草劑的防禦能力,或使攜帶疾病的病媒蚊滅絕

下一任美國總統要接招的就是:如同曾經高度爭議的胚胎研究,政府是否應該資助為了研究而做的人類胚胎基因編輯呢?要是有人用 CRISPR 來使嬰兒免於已知的遺傳缺陷,甚至增強這些嬰兒的特定能力,如更好的夜視能力或能夠投出更強的球的臂力,那該怎麼辦呢?美國隊長或金剛狼離我們實在不遠,下一任總統要面對的爭議還有,到底該不該用規範基改的方式來規範 CRISPR?美國農業部今年發表過意見,認為 CRISPR 技術修改過的農作物 DNA 不來自其他生物,因此不受基改作物相關規範。而像是基因驅動的相關計畫(滅絕病媒蚊之類的)又該如何管理呢?新總統川普,開始做功課吧!

第三堂課:溢、溢出來啦!!!

紐約時報今年九月針對海平面上升淹沒海岸的專題報導 http://www.nytimes.com/2016/09/04/science/flooding-of-coast-caused-by-global-warming-has-already-begun.html?_r=0
《紐約時報》今(2016)年九月針對海平面上升淹沒美國海岸的專題報導

是的,雖然並不像是地震跟颱風那麼激烈,但海平面上升淹沒海岸並不是可以輕忽之事。隨著全球暖化,海洋每年平均升高 3.2 公分,從 1993 年以來大概高了約一台 iPhone 5 這樣的高度。很多人其實不理解為何會這樣,其實原因很簡單,40% 的升高是因為海水溫度提高,遇熱膨漲,其餘則是由於融化的高山冰川、面積越來越小的格陵蘭島跟南極冰蓋。如果目前的趨勢持續下去,本世紀結束前,海水高度將上升 150 公分以上。

然而海平面上升這回事不是整整齊齊地,像往水盆裡加水一樣單純。基於不同區域的地質、洋流、以及超大冰蓋融化產生的引力改變,大海的上升其實不均勻。以美國來說,美國東海岸因為海水上升而氾濫的風險比其他地方來得高,有些地方如馬里蘭州、卡羅萊納州,就跟台灣的雲林彰化屏東一帶類似,因為抽取地下水更加劇了地面沉降。另外,大西洋洋流的減弱,也會讓海水更朝陸地晃動,最後,這些力量使得東海岸的海平面以全球平均兩倍的速度在上升,而在維吉尼亞州則是更嚇人的三倍速。這也是 2016 年 9 月《紐約時報》專題報導的主題。

這個議題,無獨有偶地,獲得了終於成為影帝的李奧納多關注,他與國家地理頻道合作推出的紀錄片:《洪水來臨前》,近期也將上映。

由於將近 40% 的美國總人口居住在海岸附近,許多基礎設施,包括公路、鐵路、港口、軍事基地、能源設施跟管線、水廠和污水處理廠都離海岸線很近,這代表美國要花上數十億美元來保護或更換這些設施。目前,在海平面上升的熱點,像是維吉尼亞的漢普頓路與佛羅里達的邁阿密海灘,鄰近的社區即使在陽光明媚的日子也會遇上潮汐洪水,讓交通堵塞,使草坪死亡,金屬器械遭腐蝕。像是濕地和海草床等有助於保護海岸線免於風暴、同時繁殖重要經濟魚類的生態系統,也都被淹沒。內陸地區也會受創,因為暴風雨帶來的影響將因此更深入內陸地區。

對下一任美國總統來說,其實溫室氣體也都排了,海平面一定會升高,所以重點是政府怎樣幫助社區準備跟調適,聯邦等級的政策制定者要避免跟州政府重複做同樣的事情,或甚至陷入誰該做啥誰不該做啥的拉鋸戰。要確認指揮體系,決定誰來決定何時社區應該防禦,何時該撤守。政府該資助什麼樣的氣候與調適研究,例如如果地方規劃者能夠透過研究更明白格陵蘭島跟南極西部冰蓋融化的情形,會對海平面上升帶來什麼影響,就能降低規劃未來的不確定性。當然,還有我們到底該如何減少溫室氣體的排放,畢竟這才是推動海平面上升的源頭。這肯定是總統要好好與全球領袖共同協商的啦~


以上就是《科學》期刊建議下一任美國總統要補的六門課中的三門,雖然我們不是美國總統,也可以問問我們自己面對這些爭議跟挑戰,會如何下判斷,做決策,當台灣自己要處理這些問題時(其實現在就該處理了),我們也才能對政治人物的做法有建設性的回應,負起公民之責。另外三門課——「痴」、「智」、「直」——同樣重要,而且同樣與我們密切相關,咱們下篇繼續聊。


  • 《科學》也用簡單的影片來總結這六堂課,直接點擊觀看!

 

原始報導:David Malakoff & Jeffrey Mervis, Science lessons for the next president, Science, 2016.10.20.

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 885 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

1
0

文字

分享

0
1
0
印地安人和他們的馬
寒波_96
・2023/06/02 ・2714字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

在歐亞大陸,馴化馬對歷史的影響很大,但是美洲大陸的漫長歷史中,大部分時光不知道馬的存在。最近幾百年,美洲原住民卻和歐洲人引進的馬一見如故,不同族群發展出各異的人、馬文化。2023 年發表的一項研究,探索美洲原住民和馴化馬的交流歷史。

描繪馬與騎士的壁畫,地點為懷俄明州,年代可能為 17 世紀。應該和 Comanche 與 Shoshone 族人的祖先有關。圖/參考資料3

馬在北美洲流傳,早於歐洲勢力深入

依照現有證據推敲,馴化馬的祖先來自美洲,距今 4000 多年前在亞洲馴化。美洲野馬大部份在一萬年前就消失了,不過根據沉積物的古代 DNA 分析,也許仍有少數成員一直延續到 5700 年前。

北美洲的原住民,也就是印地安人,他們的馬都是歐洲人帶來的嗎?為了摸索馴化馬進入美洲的歷史,研究隊伍從北美洲各地獲得 33 個樣本,29 個得知年代,27 個取得古代基因組,除 1 驢,其餘皆為馬。

依照現有證據整理,馬的大歷史。圖/參考資料3

過往認為,1680 年「普韋布洛起義(Pueblo Revolt)」對馬的傳播很重要。西班牙殖民隊伍 16 世紀首先抵達中美洲,要再往北美洲前進,會先接觸北美洲的西南部,也就是廣義普韋布洛族群的地盤。

雙方 1680 年在現今的新墨西哥州爆發衝突,原住民擊敗外來殖民者,應該也收穫不少馬。有歷史學家認為,這促進馬在原住民網絡的傳播。

然而這回研究指出,至少有四處地點的馬骨年代比 1680 年更早,包括懷俄明州的 Blacks Fork、堪薩斯州的 Kaw River、新墨西哥州的 Paa’ko、愛達荷州的 American Falls Reservoir。這表示歐洲殖民者受挫以前,馬已經進入印地安人的世界,傳播到更遠的地點。

早於原住民與殖民者衝突的 1680 年普韋布洛起義,馬已經深入殖民者尚未抵達的地區。圖/參考資料1

至少在 17 世紀中期時,馬已經傳播到北美洲西半部的廣大範圍。那時殖民者尚未深入到大平原一帶(現今的科羅拉多、堪薩斯、德克薩斯、懷俄明等州),不過殖民者帶來的馬,已經融入一些印地安部族的生活,透過原住民原本的交流網絡迅速傳播。

人與馬建立新關係

印地安人的學習與適應能力很強,美國西北部的愛達荷(講波特蘭、西雅圖的東方,台灣人應該比較熟),17 世紀初期就存在馬銜等裝備,死馬骨頭也有被照顧的痕跡。當時與殖民者還沒什麼接觸的的原住民,已經懂得養馬,也會騎馬。

不同年代、地點,遺址中馬的分佈狀況。圖/參考資料1

北美洲各地的原住民們,環境條件、生活方式都不太一樣。這也反映在人與馬的關係,17 世紀起衍生出多變的人馬文化。原住民和馬的相處時光雖然不長,卻深刻到成為不少族群的傳統,受到強烈打壓下,馬總是夥伴。

馬骨取得的古代 DNA 分析指出,所有原住民的馬都和更早的美洲馬群無關。維京人曾經抵達美洲,或許有帶馬,但是沒有在美洲留下遺傳紀錄。

顯然美洲原住民的馬,都來自西班牙開始的歐洲殖民者。遺傳上 17 到 18 世紀的馬最接近西班牙,後來卻更像英國,看來歐洲不同勢力前來的順序,也對馬產生影響。

考古學家 William Taylor 在實驗室中研究馬骨。圖/參考資料3

馬的新國度

印地安人指稱馬的名稱很多。像是 Pawnee 族人稱呼馬為「新狗」,Blackfeet 叫作「麋鹿狗(elk)」,Comanche 稱為「魔術狗(magic)」,Assiniboine 則是「偉大狗(great)」。

美洲原住民的祖先移民到美洲時,與馴化狗一起。長期以來,狗狗是美洲人最親密的動物。上述幾族的邏輯,是將原本熟悉的人狗關係,拓展用於理解馬。

拉科達蘇族騎士 1899 年留影。那時受到殖民勢力連年壓迫,光景已經大不如前。圖/Lakota, Dakota, Nakota – The Great Sioux Nation

拉科達(Lakota)族人心目中,馬的地位更高。拉科達文化中無所謂馴化、野馬之分,也不會特別飼養馬匹,馬屬於「馬國(Horse Nation)」的子民,族語 Šungwakaŋ,和拉科達人就像同盟國一般。

眾多印地安族群中,拉科達人相當出名。公元 1876 年拉柯達蘇族的聯軍,在蒙大拿的小大角擊潰來犯的美軍,轟動一時。領袖「瘋馬」、「坐牛」都成為歷史名人,當中 Šungwakaŋ 的貢獻也可想而知。

延伸閱讀

參考資料

  1. Taylor, W. T. T., Librado, P., Hunska Tašunke Icu, M., Shield Chief Gover, C., Arterberry, J., Luta Wiƞ, A., … & Orlando, L. (2023). Early dispersal of domestic horses into the Great Plains and northern Rockies. Science, 379(6639), 1316-1323.
  2. The untold history of the horse in the American Plains: A new future for the world
  3. Horse nations: Animal began transforming Native American life startlingly early

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
185 篇文章 ・ 801 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
1

文字

分享

0
1
1
蓋房子高手?建築業的未來新星:科氏芽孢桿菌——《細菌群像》
麥田出版_96
・2023/03/12 ・1528字 ・閱讀時間約 3 分鐘

  • Bacillus cohnii   
  • 科氏芽孢桿菌
  • 形狀:圓
  • 直徑:0.6 至 0.7 微米
  • 前進:使用布滿細胞表面的鞭毛
科氏芽孢桿菌。圖/《細菌群像》。

會產生石灰的細菌

細菌不僅可以用於生產食物或提煉金屬,還可以用來建造橋樑和房屋。

例如科氏芽孢桿菌,這是一種一點都不起眼,但會產生石灰的細菌。它喜歡鹼性的生活環境,像是酸鹼值可達八的馬糞裡。但它也生活在鹼性更強的環境,全世界都有其蹤跡,甚至在歐洲、非洲、南美、土耳其的鹼湖裡,它會利用溶在湖裡的碳酸鹽產生石灰。

此細菌最初是在一九九○年代初期,德國微生物及細胞培養保藏中心的細菌學家在尋找偏好鹼性環境的新菌種時所發現,當時的土壤樣本來自一個鹼性土壤的牧場,裡面還殘留著馬糞。

科氏芽孢桿菌除了能夠忍受酸鹼值超過十二的強鹼,相當於氣味刺鼻的氨水的酸鹼值,還能形成孢子渡過長時間的乾旱期。細菌孢子的特性是具有極強的抵抗力,可以存活數十年或數百年,在特定的條件下甚至超過數百萬年(球形離胺酸芽孢桿菌(→ 78頁)還有發芽的能力。

科氏芽孢桿菌的名字源自於德國細菌學家費迪南.尤利烏斯.科恩(Ferdinand Julius Cohn),細菌學的奠基者,也是一八七二年第一個鑑識出芽孢桿菌屬這種小桿形細菌的學者。

研發能「自行修復」的混凝土

科氏芽孢桿菌能生活在鹼性環境中,能產生石灰,孢子經過長時間還具有發芽能力。結合這三種特性,令建築業對之產生興趣。一位荷蘭微生物學家專門研究會產生石灰的細菌,並嘗試研發出一種能自行修復的混凝土。

科學家試圖利用科氏芽孢桿菌研發出能自行修復的混凝土。圖/envatoelements

他的做法是將細菌孢子與銨鹽、磷酸鹽及養分混合在一起,封裝於黏土球裡,然後將這粒只有幾公厘大小的顆粒加入強鹼性的混凝土中。混凝土硬化後若一直保持緊密,便無事發生。但如果出現裂縫,開始長時間滲水,細菌孢子就會開始萌發。當細菌繁殖分裂,會消耗添加進去的物質,並不斷產生碳酸鈣填補裂縫。一道幾公釐寬的裂縫,只需數天時間即可修補完畢。

如此一來,科氏芽孢桿菌就可以解決混凝土結構出現裂縫的難題,否則定期必須進行的繁複維修,造成的損失可高達數十億歐元。除此之外,此細菌也能用在保護現存的建築物,在噴塗混凝土或修復液中皆已測試添加此細菌,用在已出現細微裂縫的建築構件上。

不過,此項產品至今尚未成熟,黏土顆粒仍然占據太多空間,進而影響混凝土的穩定性。還有載體材質、養分及混凝土之間的交互作用,以及孢子平均分布與釋放,與石灰形成的速度及過程等等,都還在改良中。如今,研究人員也測試其他能形成石灰的細菌是否適用。不過無論如何,科氏芽孢桿菌可說是混凝土生物修復劑的先鋒。

科氏芽孢桿菌這類會產生石灰的細菌,現在也運用在其他目的上。一家德國公司利用它來黏走採礦產生的灰塵。方法是將細菌加入培養液裡,灑在布滿灰塵的泥土上,六至四十八小時內就會產生石灰,將灰塵顆粒黏在一起形成砂岩,即固化灰塵。從前為了抑制灰塵,礦業公司必須使用大量的水,如今,藉由細菌的幫忙,就可以省下這些水了。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 14 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。

1

4
0

文字

分享

1
4
0
高效率生存!生物界的空間利用大師:遍在遠洋桿菌——《細菌群像》
麥田出版_96
・2023/03/11 ・1874字 ・閱讀時間約 3 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • Candidatus Pelagibacter ubique 
  • 遍在遠洋桿菌
  • 外觀:通常如月牙般略彎之小桿 
  • 長:0.37 至 0.89 微米 寬: 0.12 微米至 0.20 微米
遍在遠洋桿菌。圖/《細菌群像》。

高效率利用生存空間

假使將我們肚裡大腸桿菌的體型比作兔子,遍在遠洋桿菌的體型就如同小老鼠。這種無所不在的海洋細菌不只是能獨立生存的細菌中體積最小的[1],可能也是全世界最有效率也最成功的生物。每公升的海水裡,就有數以百萬計這種細菌,據推測,遠洋桿菌屬的總菌量在地球上高達 1027 至 1028,這個數目是宇宙中目前可觀測到之恆星數量的十萬至一百萬倍。

但這種細菌所創下的紀錄不只這項: 海水所含養分非常貧乏,微生物要生存,就必須主動將所需養分分子輸送進細胞內部。這會消耗能量,最後也一定會有所剩餘。遍在遠洋桿菌則生活在極限邊緣:擁有正好足夠其吸收養分及生長繁殖所需的能量,剛剛好,不多也不少。

遍在遠洋桿菌可說是生物界的空間利用大師,其用來維持新陳代謝和繁殖的胞內空間,少到令人難以想像。細胞內三分之二的空間用於新陳代謝,剩下的三分之一被遺傳物質占滿。在小小的空間裡備有感應系統,能偵測含碳、氫、鐵化合物及光線的位置,擁有必要的運輸系統,以及一切所需的酵素,能自行生產二十種維持生命不可或缺的胺基酸。

體積若是再小,就只能放棄全部或部分的新陳代謝。例如,更小的病毒基本上就是壓縮緊密的基因,會侵入其他生物的細胞中,將別人的新陳代謝系統據為己用。

如果養分充足,細胞內無須再具備持家基因,生活在這種環境的細菌或古菌的確可以小過遍在遠洋桿菌。例如生殖道黴漿菌(Mycoplasma genitalium),這是一種對人類致病的病原體,會在尿道、子宮等黏膜造成感染,體積僅有三百乘以六百奈米左右,但無法獨立生存[2]。二○一五年有學者聲稱在地下水裡發現更小的細菌,但直至今日為止尚未能成功培養,因此學界相當懷疑是否真實存在。

精簡而高效的演化結果

此外,遍在遠洋桿菌的維生機制,效率也出奇地高。它只有一百三十萬組鹼基對,共含約一千四百個基因,是至今已知可獨立生存的物種中最少的。沒有任何多餘的東西,只有必要的配置。甚至連遺傳密碼,也似乎為了減少能量消耗而有過最佳化的調整。

一如其他生物,遠洋桿菌的遺傳密碼由四種鹼基 A(腺嘌呤)、C(胞嘧啶)、G(鳥嘌呤)、T(胸腺嘧啶)所組成。但比起其他細菌,遠洋桿菌裡 A 與 T 出現較為頻繁,此點便是出於效能,因為 C 與 G 含有較多的氮(而這在海水中是稀有元素),製造起來較為困難,如同人們以盡可能節省墨水的方式寫作一樣。

遍在遠洋桿菌在其所屬的立克次體目裡,算是特異獨行的一支。因為除了它之外,所有立克次體目的細菌,都必須在其他生物細胞內才能存活,其中也有不少病原菌,例如普氏立克次體菌,流行性斑疹傷寒的病原菌,透過蝨子傳染。

生物學家研究遍在遠洋桿菌並不只因為其驚人的能源效能和基因體的構造,對生態而言,它也相當重要。因為所有遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多,且占有海洋細菌生物量的四分之一;在溫暖的夏季,甚至可能高達二分之一。由於它的主要食物來自死亡生物殘留下來的可溶性有機物,因此在地球的碳循環上,也扮演一個重要的角色。

遍在遠洋桿菌加起來的重量,比全球海洋魚類總重量還要多。圖/envatoelements。

由於數量實在太龐大,因此也容易引起敵人的覬覦:至今已知有數種病毒,會侵占並消滅此種細菌。

遲至二○○二年,人們才知道遍在遠洋桿菌的存在。在那之前,人們只認得它的 rRNA(核糖體核糖核酸)序列,是一九九○年研究人員在北大西洋馬尾藻海的海水樣本裡所發現。這也是首批運用當時最新的序列鑑定方法檢測到的細菌之一,但當時無法成功地培養出來。最後研究人員用了養分很低的培養基,以及高度稀釋的樣本,並添加一種能附著在核糖體上的染劑用以判別才成功。

註解

  • [1] 審定注:一些寄生型細菌和古菌更小。
  • [2] 審定注:該菌倚賴人類細胞裡的現成養分存活。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

所有討論 1
麥田出版_96
24 篇文章 ・ 14 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。