0

0
0

文字

分享

0
0
0

擴大機挑功率大的準沒錯?(下)—《音響入門誌》

PanSci_96
・2016/09/24 ・3188字 ・閱讀時間約 6 分鐘 ・SR值 524 ・七年級

編按:身為音響愛好者的你,在選擴大機時,你知道該注意什麼資訊嗎?在上篇中介紹了最基礎的聲音原理,這篇則要告訴你如何用三個問題決定你的擴大機需要的功率大小。

文/林彥君

你的揚聲器嗓門有多大?

擴大機需要多大的功率,與揚聲器的靈敏度(Sensitivity)有很大的關聯。藉由單體的前後振動,揚聲器可將擴大機送來的電能訊號轉換為聲波,靈敏度代表的意義即為揚聲器將「電能」轉換為「聲能」的效率。同樣給予 1 W 的功率,不同揚聲器所發出的音量一定會有大有小,可發出較大聲壓的,靈敏度較高,反之則靈敏度較低。

靈敏度

靈敏度的單位為 dBSPL / 1 W  /1 m,若一揚聲器的靈敏度為 80 dBSPL / 1 W / 1 m,則代表給予揚聲器 1 W 的功率,在距離揚聲器軸線 1 公尺處可測得 80 dBSPL 的音量。85 以下算是低靈敏度、86~90 為中靈敏度,91 以上就算高靈敏度了。靈敏度愈高,表示揚聲器可以用愈小的功率發出愈大的聲音,對擴大機的功率需求較小。

理論上,若擴大機的輸出功率增加 3 dB(2倍),揚聲器的輸出聲壓也應該要增加 3 dB;輸出功率增加 10 dB(10倍),揚聲器的輸出聲壓也應該要增加 10 dB。附表二列出了揚聲器的靈敏度、輸出聲壓與擴大機的輸出功率之間的關係。以靈敏度為 80 dBSPL / 1 W / 1 m 的揚聲器為例,在1公尺處輸入 1W 的功率可獲得 80 dBSPL 的音量,若輸入功率變為 2 倍(2 W),可獲得 83 dBSPL 的音量;若為 10 倍(10 W),則可獲得 90 dBSPL 的音量。想多獲得 3 dB 的音量,擴大機的輸出功率需呈倍數增長。

-----廣告,請繼續往下閱讀-----
附表二
附表二:揚聲器的靈敏度、輸出聲壓與擴大機的輸出功率。

高靈敏度的揚聲器在所需音量較小的情況下還看不太出來他的好處,但若是於演唱會等所需音量較大的場合聆聽時,優點就顯現出來了。在 1 公尺處若想獲得 110 dBSPL 的音量,靈敏度為 92 dBSPL/1W/1m 的揚聲器僅需 64 W 的功率就足夠,但靈敏度為 80 的揚聲器,則需動用到 1024 W 巨獸等級的擴大機,兩者所需的功率足足相差了 16 倍,近 1000 W!

1111
距離越遠,聲壓越小。

需特別注意的是,附表二所列的輸出聲壓只是理論值,實際上,揚聲器所能承受的最大功率是有極限的,並非給予越大的功率,揚聲器就能無限制地發出越大的音量。因此,揚聲器的最大輸出聲壓還需考慮其所能承受的最大功率,若一靈敏度為 80 dBSPL/1 W/1 m 的揚聲器,所能承受的最大功率為 32 W,則 95 dBSPL 的音量就已經是極限了。

揚聲器的承受功率標示也分為最大瞬間承受功率以及平均承受功率,後者才是有意義的數值,在選購時要多加留意。若是供給的功率超過揚聲器的承受範圍,則多出來的功率會變成熱能逸散掉而非轉換為聲音,超過太多,揚聲器就有可能因為產生過多的熱能而燒毀單體中的線圈。高音單體與超高音單體由於線圈線徑較小,可承受的功率也較小,使用不當,往往會成為第一個遭殃的犧牲者,在使用時要特別注意。

聆聽空間大小與聆聽音量

了解靈敏度與功率的關聯還不足以判斷所需擴大機的功率大小。聲音的大小與聆聽距離息息相關,透過日常生活的經驗,可知距離越遠,聲音越小,因此,聆聽環境不同,對擴大機的功率需求自然也不同。是要擺在書桌上近距離聆聽?還是擺在客廳?在室內還是在戶外?距離與聲壓成反比關係,距離增加一倍,聲壓就減為一半,相當於聲壓級減少 6dB。附表三列出了距離與聲壓的關係。舉例來說,靈敏度為 80 dBSPL / 1W / 1m 的揚聲器,輸入 1W 的功率,在 1 公尺處音量為 80 dBSPL,在 2 公尺處,音量會降至 74 dBSPL,在 4 公尺處,只剩下 68 dBSPL。若想在 4 公尺處一樣獲得 80 dBSPL 的音量,則增加 12 dB 的音量,功率亦需增加 12 dB,對照附表一可知,12 dB 相當於 16 倍(16 W)的功率。

-----廣告,請繼續往下閱讀-----
附表三
附表三:距離與聲壓對照表。

需要多大的功率與個人喜好聆聽的音量大小也有關係,80 dBSPL 的音量長期暴露即會造成聽覺的損傷。因此,一般建議長期聆聽音量控制在 80 dBSPL 以下較佳。筆者喜好的音量約為 70~75 dBSPL。唯試聽音響時,音量會增加至 85 dBSPL,以求聆聽到更多的細節。

一首歌曲並非總是維持在一定的音量,音樂的高潮或磅礡處,可能會比平均音量多上 3~6 dB 甚至更多。因此,衡量出所需的最大聆聽音量後,建議要再加上 6 dB 的餘裕,才能確保在聆聽時能獲得較佳的聆聽感受。

音響小撇步:

聽力一旦毀損就無法回復,在 90 dBSPL 的環境下,最多只能待 8 小時。你知道自己平常聆聽的音量有多大聲嗎?以下這個 APP 可以測量周圍環境的分貝值,享受音樂之餘,也別忘了聽力的健康與保養喔!

上網搜尋:「噪音捕手」

三個問題,決定所需的功率大小

綜合上述,擴大機需要多大的功率,主要取決於三個因素,需要多大的音量、揚聲器的靈敏度、以及聆聽距離的遠近。以下列舉了一些情境實例:

決定好以上三點後,只需要簡單的三個步驟,就可以計算出所需的功率大小了,步驟如下:

-----廣告,請繼續往下閱讀-----

1. 查閱附表三,找出在欲聆聽的距離下,輸入 1 W 的功率可獲得多大音量  V1W

2. 將最大音量 VMAX 減去 V1W,得到音量差距 VD

3. 查閱附表一左側欄位,得到 V對應的倍數,乘上 1 W,即為所需的功率。

附表一
附表一:倍數與分貝轉換對照表

以情境一為例,目標是要在 1 公尺處發出 86 dBSPL(VMAX)的音量。靈敏度 83 dBSPL / 1 W / 1 m的揚聲器,輸入 1 W 的功率,在 1 公尺處可發出 83 dBSPL(V1W)的音量,與最大聆聽音量差距為 3dB(VD)。欲增加 3 dB 的音量,則功率也需增加 3 dB。查閱附表一的左側欄位,可知 3 dB 相當於 2 倍,輸出功率為 1 W 的 2 倍(2 W),即可在 1 公尺處發出 86 dBSPL 的音量。

再以情境二為例。查閱附表三可知,在 4 公尺處聲壓會比在 1 公尺處少 12dB。輸入 1W 的功率,靈敏度為 83 dBSPL / 1W / 1m 的揚聲器在 4 公尺處音量為 71 dBSPL(V1W),與最大音量 83 dBSPL(VMAX)差距 12dB(VD)。查閱附表一,可知 12dB 相當於 16 倍,因此,距離 4 公尺的客廳,僅需 16W 左右的擴大機便足夠。

理論與實際的差距

由以上可知,一般家用音響對功率的需求其實不大。然而,理論歸理論,實際購買時,一般會建議瓦數為理論值的 2~4 倍。揚聲器與擴大機的數據都是廠商提供的,你無從得知這些數據是如何測得、也無法驗證這些數據的真實性,甚至,有些數據的標準是各家廠商自行決定的。

舉例來說,稍早有提到揚聲器的頻率響應圖是像水波般高低起伏,也就是說,給予揚聲器 1 W 的功率,不同頻率的聲壓必不盡相同。然而,靈敏度只有定義是在 1 瓦、1 公尺處測量,並沒有明確定義是在什麼頻率下測得的,究竟這個數據是取 1 kHz 處、取平均值、甚至是取最高點,消費者根本無從得知。取的頻率點不同,聲壓可能會差到 3 dB 甚至  6 dB、相當於 2~4 倍的功率差異!

-----廣告,請繼續往下閱讀-----

同理,擴大機的最大輸出功率也是廠商說了算。要精確地測量音響設備的規格,所需的測量工具與檢測環境皆造價不菲,並不是每家音響廠商都負擔得起高昂的測試費用。筆者要再次強調,所有數據都只是參考用途,千萬別當成聖經膜拜,把數據好壞當成選擇的唯一依據。

因此,綜合來說,若是將揚聲器擺在書桌上,聆聽距離 1 公尺左右,就算是低靈敏度的揚聲器,4 W~8 W 的擴大機也已經綽綽有餘了。若是在一般大小的客廳或書房,則擴大機的功率 30 W~60 W 左右也已經非常足夠。

那麼,是否擴大機的功率越大,音質就越好呢?答案是不一定。靈敏度與音質並沒有正相關,擴大機的功率與推得好不好、聲音的細節表現等其實也沒有絕對的關係。讀者可依自身的聆聽習慣和環境,購買符合自身需求的擴大機,而非一味追求大功率。其餘的挑選觀念,在往後的「看觀念」中,會再陸續為各位說明,希望各位讀者都能挑選到最適合自己的音響器材!


Vol 2

本文轉載自《音響入門誌》vol.2:擴大機篇。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

11
3

文字

分享

1
11
3
【2022 年搞笑諾貝爾工程學獎】旋鈕大小與手指數之間的完美關係:轉動音量鈕需要用到幾根手指?
linjunJR_96
・2022/09/29 ・1644字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

旋鈕多大才好轉?誰知道啊!

有些問題是生活中不斷遇到,卻從來不會加以思索的。像是當你在開車時調整車上的冷氣溫度,還有聽音樂時調整藍芽音響的音量與音色。此時,指尖所操控的旋鈕該做多大,才是最好轉的呢?

「誰知道啊!」你心裡這麼想。

這種日常體驗的問題看似微不足道,但其實就是產品設計和工業設計這類領域最關注的焦點,甚至能幫你贏得搞笑諾貝爾獎!

本年度的搞笑諾貝爾獎頒獎典禮在線上舉辦,表揚世界各地的研究者如何用專業能力探討奇妙的問題。今天要介紹的工程學獎,頒給了日本千葉工業大學的松崎元教授,以及他扎實的研究論文《如何用手指操控柱狀旋鈕》。透過實驗室中的實際測量,松崎教授紀錄了人們使用各種大小的旋鈕時,如何下意識地將不同手指放在不同位置來操作。

圖/Pexels

當我們看見一顆旋鈕,我們會透過目測其大小,來決定該用怎麼樣的手勢轉它。如果是直徑一公分左右的小旋鈕,我們會選擇只用拇指和食指來操作,更多的手指只會徒增不便;但如果是快十公分的大旋鈕,就需要動用四五根手指。這個決定不單純只是個人偏好,而是跟人類手掌和手指的構造有關聯。只有某種握法才是最舒服方便的。

-----廣告,請繼續往下閱讀-----

此外,通常看到旋鈕就直接給它轉下去了,不會在旋鈕上面嘗試並修正來達成「最佳觸感」。也就是說,這個決策過程從小多次練習後,已經完全變成下意識的過程,只能透過實際測試結果來描繪。

下意識的選擇,只有做實驗才知道

在實驗室中,松崎教授的透明桌面上平放一個白色的圓形旋鈕,並請 32 名受試者順時針旋轉這個旋鈕,並從桌面下的攝影機捕捉人們手指的位置。旋鈕的直徑從七毫米到十三公分,總共 45 種。結果顯示,當旋鈕越大,動用的手指數量越多(一如預期)。只要旋鈕直徑超過五公分,大多數受試者便會開始使用五根手指。

根據所有受試者的統計結果,松崎教授整理出了上方這個十分優雅的圖表。標靶一般的同心圓代表各種大小的旋鈕。圖下半的粗黑直線是基準線,所有測試結果的拇指位置統一對齊這條線,以利進行比較。上方的四條曲線,由左到右分別是食指到小指的位置,虛線則是統計標準差(當然,實際上的實驗結果應該是一個一個離散的點,這裡簡單地用二次曲線進行擬合,比較好看)。

圖/參考資料 3

這張圖總結了不同旋鈕大小的情況下,人們手指位置如何變化。有趣的是,隨著旋鈕變大,四根手指的位置並非簡單地輻射向外,而是呈現螺旋狀。猜測是跟手掌張開並旋轉的方式有關。這種細微的趨勢不做實驗還真猜不到。

-----廣告,請繼續往下閱讀-----

不是為了搞笑,每份研究都超認真

這份研究其實在 1999 年就已經發表,時隔二十多年獲得搞笑諾貝爾獎。儘管中文翻譯是「搞笑」諾貝爾獎,但是包括松崎教授在內的所有獲獎者,可是從來沒有要搞笑,而是以非常專業的態度在做他們的工作,這些研究成果也都發表在正式的期刊。自 1999 年的旋鈕研究之後,松崎教授又相繼研究了提袋握把和雨傘握把,可說是精通抓握之道的男人。

雖然得到搞笑諾貝爾獎,但研究內容都是超認真。 圖/GIPHY

松崎教授表示,他很樂見這個獎項讓更多人開始關注設計工程的領域。這門學問專注於探索人與物品之間的關係,並藉此創造最舒適的使用體驗,打造出實用的工業產品。

更多有趣的研究,請到【2022 搞笑諾貝爾獎】

參考資料

  1. Japanese professor wins Ig Nobel prize for study on knob turning
  2. Japanese researchers win Ig Nobel for research on knob turning
  3. 松崎元, 大内一雄, 上原勝, 上野義雪, & 井村五郎. (1999). 円柱形つまみの回転操作における指の使用状況について. デザイン学研究, 45(5), 69-76.
所有討論 1
linjunJR_96
33 篇文章 ・ 892 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
音樂進入我們的耳朵時發生了什麼事?--《知識大圖解》
知識大圖解_96
・2017/07/01 ・2331字 ・閱讀時間約 4 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

我們如何製作音樂?音樂進入我們的耳朵時又會發生什麼事?

音樂是我們文化中古老的一環,對我們的心智具有強大的影響力。歌曲可以讓人哭、讓人笑、讓人聞之起舞,或是厭惡地掩耳拒聽;每個人也都有各自喜愛的歌曲。

聲音由振動產生。

當樂器的弦振動時,便會推擠前方的空氣(壓縮),並使後方的空氣擴張(稀薄化);此過程會產生在空氣中行進的聲波

當聲波到達耳朵時,就會推動耳道中的空氣、讓耳膜產生振動。這種振動會觸動三塊聽小骨,將振動傳往耳蝸(充滿液體的螺旋形結構);耳蝸中液體的運動則能產生會被送到腦部的電訊號。然而,這只是人耳能聽見音樂的一小部分過程。

這些簡單的振動能引發強烈的情緒反應,而音調本身以及我們腦部的感知方式亦十分複雜。

-----廣告,請繼續往下閱讀-----

抵達你耳朵的聲波帶有大量資訊,音樂的音調基本上包含音量音高音質(或稱音色)。振動越大,聲音越響;振動頻率越高,音高越高;音質則取決於聲波的平滑程度。

在物理教科書中出現的標準波形都十分平滑,但人或樂器所產生的聲音並不會真的如此平順;正是這些小小的不完美彼此加乘,才能形成最終音調的音色。此外,還須考量回聲、混響(reverberation)、共鳴及層層疊加的樂器、嗓音和歌詞。

我們的腦部須處理這些輸入耳內的聲音,而不只是將音調轉譯成電訊號。處理音樂訊息的過程與我們腦中控制愉悅、恐懼、動作、記憶和情緒的部位有關,且歌曲還能啟動意想不到的迴路。接下來,我們將深入介紹,當你聽到喜愛的歌曲時,腦中究竟會發生什麼事。

點擊放大圖。圖/《知識大圖解》提供

-----廣告,請繼續往下閱讀-----

聲學共鳴

撥動套在人造奶油罐上的橡皮筋時,所發出的聲音與撥弄吉他鋼弦並不相同。撥動橡皮筋或琴弦時,產生的振動會傳遞至樂器本身;樂器的形狀和材質對最終的音調影響頗大。不同的物體會傾向以特定的頻率振動,某些頻率也會特別容易被放大,這就是所謂的共鳴。

除非樂器改變形狀,否則共鳴頻率都會固定,而這也是人聲會如此特別的原因。喉嚨、嘴巴和鼻子就如同樂器的管子,能放大聲帶產生的振動;改變嘴形能發出不同的字音,打開喉嚨或用鼻音唱歌則可唱出截然不同的音調,這是因為我們改變了發聲系統的共鳴特性。歌劇演唱家是共鳴專家,他們能善用共鳴,在不使用麥克風的情況下讓歌聲傳遍整個音樂廳。

點擊放大圖。圖/《知識大圖解》提供

音樂廳的聲學

演奏出正確的音調只是完美演出的一部分

音樂廳擔負著重責大任,它必須讓聽眾沉浸在管弦樂團的最大樂聲中,卻又不能造成回音;另外,還得放大獨奏樂手奏出的精緻樂音,讓後排聽眾能聽得一清二楚。想確保聽眾能夠盡興,音樂廳的設計得考量三項因素:音量等化混響

-----廣告,請繼續往下閱讀-----

完美的演出還要加上完美的音樂廳,它必須讓聽眾沉浸在管弦樂團的最大樂聲中,卻又不能造成回音;另外,還得放大獨奏樂手奏出的精緻樂音,讓後排聽眾能聽得一清二楚。圖/By Hanserblich, CC BY 3.0, wikimedia commons

音量主要由管弦樂團直接發出的聲響來控制,但也會受牆壁和天花板的反射所影響。音樂廳絕對不能有過多的回音,因為聽眾的耳朵會預期音樂來自於管弦樂團,而非身後的牆壁。

等化可確保聽眾聽到所有的頻率。有的空間會放大某些特定的頻率,而等化的目標就是使聲音達到平衡,並稍微消減最高的音調,以免出現任何來自弦樂器的尖銳聲音。

混響則是樂音在音樂廳內部四處反彈的結果。各個物體表面所反射的聲音並不一致,因此若不加以矯正,樂音就會有些失真。

-----廣告,請繼續往下閱讀-----

音樂廳能夠平衡上述所有的因素,它利用了各種不同的形狀和材質來維持聲音的平衡,再將之導向聽眾。平坦而堅硬的表面能反彈聲音;柔軟的表面可吸收聲音;粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使樂音在抵達你的耳朵之前,先被調整並優化。

改善音響效果

倫敦皇家阿爾伯特音樂廳的天花板掛滿了一顆顆蘑菇,但這並不是溼氣太重所致,這種奇異的構造可是為了改善音響效果。這些蘑菇在 1960 年代經過測試,隨後便安裝上去,並於 2001 年再次改良;目前共掛著 85 朵玻璃纖維製的真菌。皇家阿爾伯特音樂廳很大,天花板具有拱頂,若少了這些蘑菇,管弦樂團奏出的每個音符都會出現冗長的延遲回音。然而,即便有了這些蘑菇,仍需大型管弦樂團來讓這座巨型音樂廳充滿著樂音。

倫敦皇家阿爾伯特音樂廳的天花板掛滿了一顆顆蘑菇,但這並不是溼氣太重所致,這種奇異的構造可是為了改善音響效果。圖/By Colin, CC BY-SA 4.0, wikimedia commons

點擊放大圖。圖/《知識大圖解》提供

-----廣告,請繼續往下閱讀-----

點擊放大圖。圖/《知識大圖解》提供

點擊放大圖。圖/《知識大圖解》提供

點擊放大圖。圖/《知識大圖解》提供

點擊放大圖。圖/《知識大圖解》提供

-----廣告,請繼續往下閱讀-----

本文節錄自《How It Works 知識大圖解 國際中文版》第 33 期(2017 年 06 月號)

更多精彩內容請上知識大圖解

知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
0

文字

分享

0
0
0
擴大機挑功率大的準沒錯?(下)—《音響入門誌》
PanSci_96
・2016/09/24 ・3188字 ・閱讀時間約 6 分鐘 ・SR值 524 ・七年級

編按:身為音響愛好者的你,在選擴大機時,你知道該注意什麼資訊嗎?在上篇中介紹了最基礎的聲音原理,這篇則要告訴你如何用三個問題決定你的擴大機需要的功率大小。

文/林彥君

你的揚聲器嗓門有多大?

擴大機需要多大的功率,與揚聲器的靈敏度(Sensitivity)有很大的關聯。藉由單體的前後振動,揚聲器可將擴大機送來的電能訊號轉換為聲波,靈敏度代表的意義即為揚聲器將「電能」轉換為「聲能」的效率。同樣給予 1 W 的功率,不同揚聲器所發出的音量一定會有大有小,可發出較大聲壓的,靈敏度較高,反之則靈敏度較低。

靈敏度

靈敏度的單位為 dBSPL / 1 W  /1 m,若一揚聲器的靈敏度為 80 dBSPL / 1 W / 1 m,則代表給予揚聲器 1 W 的功率,在距離揚聲器軸線 1 公尺處可測得 80 dBSPL 的音量。85 以下算是低靈敏度、86~90 為中靈敏度,91 以上就算高靈敏度了。靈敏度愈高,表示揚聲器可以用愈小的功率發出愈大的聲音,對擴大機的功率需求較小。

理論上,若擴大機的輸出功率增加 3 dB(2倍),揚聲器的輸出聲壓也應該要增加 3 dB;輸出功率增加 10 dB(10倍),揚聲器的輸出聲壓也應該要增加 10 dB。附表二列出了揚聲器的靈敏度、輸出聲壓與擴大機的輸出功率之間的關係。以靈敏度為 80 dBSPL / 1 W / 1 m 的揚聲器為例,在1公尺處輸入 1W 的功率可獲得 80 dBSPL 的音量,若輸入功率變為 2 倍(2 W),可獲得 83 dBSPL 的音量;若為 10 倍(10 W),則可獲得 90 dBSPL 的音量。想多獲得 3 dB 的音量,擴大機的輸出功率需呈倍數增長。

-----廣告,請繼續往下閱讀-----

附表二
附表二:揚聲器的靈敏度、輸出聲壓與擴大機的輸出功率。

高靈敏度的揚聲器在所需音量較小的情況下還看不太出來他的好處,但若是於演唱會等所需音量較大的場合聆聽時,優點就顯現出來了。在 1 公尺處若想獲得 110 dBSPL 的音量,靈敏度為 92 dBSPL/1W/1m 的揚聲器僅需 64 W 的功率就足夠,但靈敏度為 80 的揚聲器,則需動用到 1024 W 巨獸等級的擴大機,兩者所需的功率足足相差了 16 倍,近 1000 W!

1111
距離越遠,聲壓越小。

需特別注意的是,附表二所列的輸出聲壓只是理論值,實際上,揚聲器所能承受的最大功率是有極限的,並非給予越大的功率,揚聲器就能無限制地發出越大的音量。因此,揚聲器的最大輸出聲壓還需考慮其所能承受的最大功率,若一靈敏度為 80 dBSPL/1 W/1 m 的揚聲器,所能承受的最大功率為 32 W,則 95 dBSPL 的音量就已經是極限了。

-----廣告,請繼續往下閱讀-----

揚聲器的承受功率標示也分為最大瞬間承受功率以及平均承受功率,後者才是有意義的數值,在選購時要多加留意。若是供給的功率超過揚聲器的承受範圍,則多出來的功率會變成熱能逸散掉而非轉換為聲音,超過太多,揚聲器就有可能因為產生過多的熱能而燒毀單體中的線圈。高音單體與超高音單體由於線圈線徑較小,可承受的功率也較小,使用不當,往往會成為第一個遭殃的犧牲者,在使用時要特別注意。

聆聽空間大小與聆聽音量

了解靈敏度與功率的關聯還不足以判斷所需擴大機的功率大小。聲音的大小與聆聽距離息息相關,透過日常生活的經驗,可知距離越遠,聲音越小,因此,聆聽環境不同,對擴大機的功率需求自然也不同。是要擺在書桌上近距離聆聽?還是擺在客廳?在室內還是在戶外?距離與聲壓成反比關係,距離增加一倍,聲壓就減為一半,相當於聲壓級減少 6dB。附表三列出了距離與聲壓的關係。舉例來說,靈敏度為 80 dBSPL / 1W / 1m 的揚聲器,輸入 1W 的功率,在 1 公尺處音量為 80 dBSPL,在 2 公尺處,音量會降至 74 dBSPL,在 4 公尺處,只剩下 68 dBSPL。若想在 4 公尺處一樣獲得 80 dBSPL 的音量,則增加 12 dB 的音量,功率亦需增加 12 dB,對照附表一可知,12 dB 相當於 16 倍(16 W)的功率。

附表三
附表三:距離與聲壓對照表。

需要多大的功率與個人喜好聆聽的音量大小也有關係,80 dBSPL 的音量長期暴露即會造成聽覺的損傷。因此,一般建議長期聆聽音量控制在 80 dBSPL 以下較佳。筆者喜好的音量約為 70~75 dBSPL。唯試聽音響時,音量會增加至 85 dBSPL,以求聆聽到更多的細節。

-----廣告,請繼續往下閱讀-----

一首歌曲並非總是維持在一定的音量,音樂的高潮或磅礡處,可能會比平均音量多上 3~6 dB 甚至更多。因此,衡量出所需的最大聆聽音量後,建議要再加上 6 dB 的餘裕,才能確保在聆聽時能獲得較佳的聆聽感受。

音響小撇步:

聽力一旦毀損就無法回復,在 90 dBSPL 的環境下,最多只能待 8 小時。你知道自己平常聆聽的音量有多大聲嗎?以下這個 APP 可以測量周圍環境的分貝值,享受音樂之餘,也別忘了聽力的健康與保養喔!

上網搜尋:「噪音捕手」

三個問題,決定所需的功率大小

綜合上述,擴大機需要多大的功率,主要取決於三個因素,需要多大的音量、揚聲器的靈敏度、以及聆聽距離的遠近。以下列舉了一些情境實例:

決定好以上三點後,只需要簡單的三個步驟,就可以計算出所需的功率大小了,步驟如下:

1. 查閱附表三,找出在欲聆聽的距離下,輸入 1 W 的功率可獲得多大音量  V1W

2. 將最大音量 VMAX 減去 V1W,得到音量差距 VD

3. 查閱附表一左側欄位,得到 V對應的倍數,乘上 1 W,即為所需的功率。

附表一
附表一:倍數與分貝轉換對照表

-----廣告,請繼續往下閱讀-----

以情境一為例,目標是要在 1 公尺處發出 86 dBSPL(VMAX)的音量。靈敏度 83 dBSPL / 1 W / 1 m的揚聲器,輸入 1 W 的功率,在 1 公尺處可發出 83 dBSPL(V1W)的音量,與最大聆聽音量差距為 3dB(VD)。欲增加 3 dB 的音量,則功率也需增加 3 dB。查閱附表一的左側欄位,可知 3 dB 相當於 2 倍,輸出功率為 1 W 的 2 倍(2 W),即可在 1 公尺處發出 86 dBSPL 的音量。

再以情境二為例。查閱附表三可知,在 4 公尺處聲壓會比在 1 公尺處少 12dB。輸入 1W 的功率,靈敏度為 83 dBSPL / 1W / 1m 的揚聲器在 4 公尺處音量為 71 dBSPL(V1W),與最大音量 83 dBSPL(VMAX)差距 12dB(VD)。查閱附表一,可知 12dB 相當於 16 倍,因此,距離 4 公尺的客廳,僅需 16W 左右的擴大機便足夠。

理論與實際的差距

由以上可知,一般家用音響對功率的需求其實不大。然而,理論歸理論,實際購買時,一般會建議瓦數為理論值的 2~4 倍。揚聲器與擴大機的數據都是廠商提供的,你無從得知這些數據是如何測得、也無法驗證這些數據的真實性,甚至,有些數據的標準是各家廠商自行決定的。

舉例來說,稍早有提到揚聲器的頻率響應圖是像水波般高低起伏,也就是說,給予揚聲器 1 W 的功率,不同頻率的聲壓必不盡相同。然而,靈敏度只有定義是在 1 瓦、1 公尺處測量,並沒有明確定義是在什麼頻率下測得的,究竟這個數據是取 1 kHz 處、取平均值、甚至是取最高點,消費者根本無從得知。取的頻率點不同,聲壓可能會差到 3 dB 甚至  6 dB、相當於 2~4 倍的功率差異!

-----廣告,請繼續往下閱讀-----

同理,擴大機的最大輸出功率也是廠商說了算。要精確地測量音響設備的規格,所需的測量工具與檢測環境皆造價不菲,並不是每家音響廠商都負擔得起高昂的測試費用。筆者要再次強調,所有數據都只是參考用途,千萬別當成聖經膜拜,把數據好壞當成選擇的唯一依據。

因此,綜合來說,若是將揚聲器擺在書桌上,聆聽距離 1 公尺左右,就算是低靈敏度的揚聲器,4 W~8 W 的擴大機也已經綽綽有餘了。若是在一般大小的客廳或書房,則擴大機的功率 30 W~60 W 左右也已經非常足夠。

那麼,是否擴大機的功率越大,音質就越好呢?答案是不一定。靈敏度與音質並沒有正相關,擴大機的功率與推得好不好、聲音的細節表現等其實也沒有絕對的關係。讀者可依自身的聆聽習慣和環境,購買符合自身需求的擴大機,而非一味追求大功率。其餘的挑選觀念,在往後的「看觀念」中,會再陸續為各位說明,希望各位讀者都能挑選到最適合自己的音響器材!


Vol 2

本文轉載自《音響入門誌》vol.2:擴大機篇。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。