我們如何製作音樂?音樂進入我們的耳朵時又會發生什麼事?
音樂是我們文化中古老的一環,對我們的心智具有強大的影響力。歌曲可以讓人哭、讓人笑、讓人聞之起舞,或是厭惡地掩耳拒聽;每個人也都有各自喜愛的歌曲。
聲音由振動產生。
當樂器的弦振動時,便會推擠前方的空氣(壓縮),並使後方的空氣擴張(稀薄化);此過程會產生在空氣中行進的聲波。
當聲波到達耳朵時,就會推動耳道中的空氣、讓耳膜產生振動。這種振動會觸動三塊聽小骨,將振動傳往耳蝸(充滿液體的螺旋形結構);耳蝸中液體的運動則能產生會被送到腦部的電訊號。然而,這只是人耳能聽見音樂的一小部分過程。
這些簡單的振動能引發強烈的情緒反應,而音調本身以及我們腦部的感知方式亦十分複雜。
抵達你耳朵的聲波帶有大量資訊,音樂的音調基本上包含音量、音高和音質(或稱音色)。振動越大,聲音越響;振動頻率越高,音高越高;音質則取決於聲波的平滑程度。
在物理教科書中出現的標準波形都十分平滑,但人或樂器所產生的聲音並不會真的如此平順;正是這些小小的不完美彼此加乘,才能形成最終音調的音色。此外,還須考量回聲、混響(reverberation)、共鳴及層層疊加的樂器、嗓音和歌詞。
我們的腦部須處理這些輸入耳內的聲音,而不只是將音調轉譯成電訊號。處理音樂訊息的過程與我們腦中控制愉悅、恐懼、動作、記憶和情緒的部位有關,且歌曲還能啟動意想不到的迴路。接下來,我們將深入介紹,當你聽到喜愛的歌曲時,腦中究竟會發生什麼事。
聲學共鳴
撥動套在人造奶油罐上的橡皮筋時,所發出的聲音與撥弄吉他鋼弦並不相同。撥動橡皮筋或琴弦時,產生的振動會傳遞至樂器本身;樂器的形狀和材質對最終的音調影響頗大。不同的物體會傾向以特定的頻率振動,某些頻率也會特別容易被放大,這就是所謂的共鳴。
除非樂器改變形狀,否則共鳴頻率都會固定,而這也是人聲會如此特別的原因。喉嚨、嘴巴和鼻子就如同樂器的管子,能放大聲帶產生的振動;改變嘴形能發出不同的字音,打開喉嚨或用鼻音唱歌則可唱出截然不同的音調,這是因為我們改變了發聲系統的共鳴特性。歌劇演唱家是共鳴專家,他們能善用共鳴,在不使用麥克風的情況下讓歌聲傳遍整個音樂廳。
音樂廳的聲學
演奏出正確的音調只是完美演出的一部分
音樂廳擔負著重責大任,它必須讓聽眾沉浸在管弦樂團的最大樂聲中,卻又不能造成回音;另外,還得放大獨奏樂手奏出的精緻樂音,讓後排聽眾能聽得一清二楚。想確保聽眾能夠盡興,音樂廳的設計得考量三項因素:音量、等化和混響。
音量主要由管弦樂團直接發出的聲響來控制,但也會受牆壁和天花板的反射所影響。音樂廳絕對不能有過多的回音,因為聽眾的耳朵會預期音樂來自於管弦樂團,而非身後的牆壁。
等化可確保聽眾聽到所有的頻率。有的空間會放大某些特定的頻率,而等化的目標就是使聲音達到平衡,並稍微消減最高的音調,以免出現任何來自弦樂器的尖銳聲音。
混響則是樂音在音樂廳內部四處反彈的結果。各個物體表面所反射的聲音並不一致,因此若不加以矯正,樂音就會有些失真。
音樂廳能夠平衡上述所有的因素,它利用了各種不同的形狀和材質來維持聲音的平衡,再將之導向聽眾。平坦而堅硬的表面能反彈聲音;柔軟的表面可吸收聲音;粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使樂音在抵達你的耳朵之前,先被調整並優化。
改善音響效果
倫敦皇家阿爾伯特音樂廳的天花板掛滿了一顆顆蘑菇,但這並不是溼氣太重所致,這種奇異的構造可是為了改善音響效果。這些蘑菇在 1960 年代經過測試,隨後便安裝上去,並於 2001 年再次改良;目前共掛著 85 朵玻璃纖維製的真菌。皇家阿爾伯特音樂廳很大,天花板具有拱頂,若少了這些蘑菇,管弦樂團奏出的每個音符都會出現冗長的延遲回音。然而,即便有了這些蘑菇,仍需大型管弦樂團來讓這座巨型音樂廳充滿著樂音。
本文節錄自《How It Works 知識大圖解 國際中文版》第 33 期(2017 年 06 月號)
更多精彩內容請上知識大圖解