Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

你在用防曬乳的時候,考慮過大海的感受嗎?

活躍星系核_96
・2016/09/08 ・2557字 ・閱讀時間約 5 分鐘 ・SR值 499 ・六年級

-----廣告,請繼續往下閱讀-----

文/魏昕宇|科學公園主編,高分子科學與工程專業博士。

题图29

人類的夏日好麻吉

又一個炎熱的夏季即將結束。相信在這個夏天裡,很多人選擇到海邊遊玩,讓清涼的海水和溫柔的海風幫助自己忘記酷暑帶來的煩惱,充分地放鬆身心。在去海邊度假的時候,大家通常都會把防曬乳帶在身邊。在盡情享受自然之美的同時,通過防曬乳等防曬工具來避免陽光中的紫外線對人體造成的損害,已成為人們的共識。

防曬乳究竟是靠什麼幫助我們抵禦紫外線帶來的傷害呢?主要是靠含有苯環結構的有機物,例如對氨基苯甲酸、甲氧基肉桂酸辛酯、氧苯酮等。別看這些化合物的名字拗口難記,它們絕對稱得上是為我們皮膚健康保駕護航的大功臣。這些化合物能在紫外線有機會接觸人體之前就將它們吸收掉,避免紫外線傷害皮膚,破壞細胞中 DNA 的結構。目前世界上大約有 50 種這樣的有機物被批准用於防曬乳的生產。除此之外,二氧化鈦和氧化鋅這兩種無機物的微粒也經常被用於防曬乳,它們不僅能夠強烈吸收紫外線,還能夠將入射的部分紫外線反射或者散射掉,從而進一步避免紫外線與皮膚接觸。

图片12
幾種常見的防曬乳活性成分的化學結構式。左起:對氨基苯甲酸、甲氧基肉桂酸辛酯、氧苯酮、磺異苯酮

防曬乳如何入侵海洋生態?

防曬乳中的這些活性物質通常很難溶於水,因此當我們到海裡游泳或者嬉戲時,塗抹在皮膚表面的防曬乳應該老老實實地待在皮膚表面替我們阻擋紫外線。然而在海水的浸泡下,總有少量的防曬乳經不住「誘惑」。於是,在許多海濱旅遊區,前面提到的那些名字拗口的化合物紛紛在海水中現身。雖然這些物質的濃度並不高,通常每公升海水中只有幾十到幾百奈克(1 奈克= 10-9公克),但自然界中原本並沒有這些物質,顯然是人類的活動讓它們出現在海洋裡。除此之外,研究人員還發現,防曬乳中的這些活性成分不僅存在於海水中,還出現海邊的沙子裡和海底沉積物裡,甚至聚積在一些海洋生物的組織中。這些事實無可辯駁地證明,人類的活動確實導致這些化學物質進入海洋生態環境[1]。

-----廣告,請繼續往下閱讀-----

有些人可能會說,我在海邊的時候並沒有下水游泳,只是在沙灘上曬太陽,應該不會讓身上的防曬乳污染海水吧?可是不要忘了,當你回到家洗澡時,皮膚上的防曬乳總會被逐漸沖洗掉;還有一部分防曬乳會在皮膚與衣服接觸的過程轉移到衣物的表面,然後又在我們洗衣服時被洗掉。無論是洗澡的廢水還是洗衣服的廢水,它們的最終歸宿都是經過城市污水系統處理後排入河流,最終匯入大海。目前的研究表明,進入水中的防曬乳的各種化學成分並不能在污水處理的過程中被徹底去除,因此難免進入海洋[1]。從這個角度看,哪怕你在使用了防曬乳之後只是坐在家門口曬曬太陽,防曬乳中活性成分對海洋的污染同樣有你的「功勞」。

4591214493_327efde0ec_z
不論是在岸上,還是在海中,防曬乳都有可能經由各種管道奔流入海。圖/dennis @ Flickr

那麼進入海洋的這些化學物質會有怎樣的影響呢?由於不同的防曬乳活性成分化學結構和性質差別很大,因此它們對海洋生物的影響也不盡相同。有些活性成分對海洋生物並沒有明顯的影響,但另外一些則具有較強的毒性。例如有研究表明,磺異苯酮和氧苯酮這兩種結構具有一定相似性的防曬乳活性成分,前者對浮游生物的半最大效應濃度(EC50, 指一種藥物能夠引起最大效應的一半時所需要的濃度)在每毫升 10000 奈克以上,而後者則低達每毫升 14 奈克。顯然氧苯酮的毒性要大得多,目前環境中探測到的每公升幾十奈克的濃度已經能夠對海洋生物造成一定的影響 [2]。還有一些防曬乳中的活性成分的化學結構與生物體內某些激素相似,因此有可能干擾生物正常的生理機能

另外,許多防曬乳中的活性成分在海洋環境中還會發生進一步的反應,這些反應產物的毒性也值得關注。在前面我們提到,防曬乳中活性成分的主要任務就是替皮膚不斷吸收紫外線。在皮膚表面上,這些活性物質本來是可以經受紫外線照射的考驗而保持化學結構的穩定,然而當這些物質進入海水後,隨著化學環境的變化,有些化合物的穩定性也會大打折扣,在光照下發生降解,或者與環境中的其他化學成分發生反應,而這些新生成的化合物同樣有可能對海洋生物產生負面影響。一個典型的例子是進入海水的二氧化鈦微粒能夠在光照下促進過氧化氫的生成,而過氧化氫對海洋生物有著明顯的毒性[3]。

不能只想到你自己

當然,從目前的研究看,即便是對海洋生物負面影響比較明顯的那些防曬乳活性成分,在海水中的濃度仍然非常低。然而不要忘了,用於防曬乳活性成分的有幾十種化合物,除此之外,在防曬乳中還有著大量起輔助作用的成分,也就是通常所說的非活性成分或者輔料,這其中包含的化合物更多,並且同樣可能進入海水。也許這種物質在海水中的濃度很低,那種物質的濃度也不高,可是這幾十種物質加起來,仍然是一個可觀的數字,對海洋生物的危害可能就會比較顯著,而這也正是許多科學家擔心的問題。在 2008 年,義大利科學家證實,微量的防曬乳就能夠導致珊瑚的白化[4],不過由於實驗手段的限制,關於海水中防曬乳的污染對於海洋生態環境的影響,我們仍然缺乏更加深入和全面的認識。

-----廣告,請繼續往下閱讀-----
639px-Keppelbleaching
微量的防曬乳就能導致珊瑚白化。圖/wiki

那麼,面對目前的狀況,我們應該怎麼辦呢?放任防曬乳中的各種化學成分進入海洋當然不可取,但為了避免可能的污染就禁止人們到海邊旅遊,或者乾脆禁止防曬乳的生產和使用,也是不實際的。我們應該做的,是透過更多的研究來更加清楚地認識防曬乳中的化學成分對海洋生態環境的影響,將那些對海洋生物危害較大的化學物質逐漸淘汰,以更加綠色環保的成分代替。只有這樣,我們才能在享受海洋帶給我們的歡樂的同時,更好地保護我們賴以生存的環境。

 

本文轉載自科學公園

參考文獻:

  • [1] David Sánchez-Quiles, Antonio Tovar-Sánchez, “Are sunscreens a new environmental risk associated with coastal tourism?”, Environmental International, 2015, 83, 158
  • [2] E. Paredes, S. Perez, R. Rodil, JB Quintana, R. Beiras, “Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus , and Siriella armata ”, Chemosphere, 2014, 104, 44
  • [3] David Sánchez-Quiles, Antonio Tovar-Sánchez, “Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters”, Environmental Science & Technology, 2014, 48, 9037
  • [4] Roberto Danovaro, Lucia Bongiorni, Cinzia Corinaldesi, Donato Giovannelli, Elisabetta Damiani, Paola Astolfi, Lucedio Greci, and Antonio Pusceddu, “Sunscreens Cause Coral Bleaching by Promoting Viral Infections”, Environmental Health Perspectives, 2008, 116, 441
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
雀斑為何只在陽光下現形?揭開「太陽之吻」的秘密
F 編_96
・2024/12/23 ・2340字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在夏日豔陽下,許多人臉上、肩膀上,甚至手臂上,會冒出一點點咖啡色小斑點,人們常親切地稱它們為「太陽之吻」。這些雀斑(freckles)在日光充足的季節裡愈顯活躍,等到秋冬時節太陽不再那麼刺眼時,顏色又逐漸淡去,甚至幾乎消失不見。

為什麼雀斑會選擇在陽光猛烈時現形?其實,雀斑的成因不僅與紫外線(UV)有關,也與我們皮膚深層的色素細胞、基因遺傳以及日常防曬觀念息息相關。

雀斑是什麼?

所謂「雀斑」,在皮膚科領域中比較常被稱為「日曬斑」或「褐斑」的一種,但嚴格來說,依據皮膚科專家的分類,可將「雀斑」區分為兩大類:

  1. 小雀斑(Ephelides):一般人在談論「雀斑」時,多半指的就是這類。它們常呈現為細小且淺棕色,通常散落於臉部、肩膀、手臂等長期曝曬陽光的部位,夏天時較為明顯,冬天會逐漸淡化。
  2. 曬斑型老人斑(Solar Lentigines):又稱「日光性黑斑」或「年齡斑」,形狀可能較大,顏色較深,常分布於長時間曝曬的肌膚區域,如臉部、手背等。它們不會像小雀斑那樣隨季節改變顏色或變淡,而是隨著年齡與累積日曬逐漸加深。

紫外線如何誘發雀斑?

皮膚中的色素,主要由名為「黑色素細胞」(melanocytes)的細胞製造,這些細胞負責產生「黑色素」(melanin)。在平時的皮膚狀態下,黑色素會平均分布在表皮中,讓每個人擁有自己獨特的膚色。當皮膚受到紫外線刺激時,為了保護深層細胞免於 UV 傷害,黑色素細胞會增加黑色素的產量,試圖將危險的 UV 射線「散射」出去,避免它穿透至更深層皮膚,造成 DNA 損傷。

-----廣告,請繼續往下閱讀-----

雀斑之所以出現,便是由於某些區域的黑色素細胞比其他區域更為活躍,在相同的日曬條件下產生了相對大量的黑色素,並集中在特定區塊,於是就形成我們肉眼可見的「小斑點」。

雀斑由黑色素細胞局部活躍產生,黑色素集中形成肉眼可見的小斑點。圖/envato

為什麼夏天雀斑特別明顯?

夏天日照時間長、紫外線指數通常也偏高,使黑色素細胞生產更多色素,故那些先天對紫外線較敏感、或具遺傳傾向產生雀斑的人,臉上就更容易冒出小斑點。等到秋冬日照減少、紫外線較弱時,這些黑色素細胞的活躍度也會跟著下降,皮膚的代謝作用會逐漸將多餘色素淡化,於是原本在夏天特別明顯的雀斑又慢慢變得不顯眼,甚至接近消失。

然而,並不是所有雀斑都會隨季節消長。同樣受到紫外線影響的「日曬型老人斑(Solar Lentigines)」,就不會像小雀斑那樣在冬天退色,因為它是長期日曬累積造成的色素沉澱,隨著年紀增長與皮膚細胞多次受紫外線傷害,這些斑點往往會持續存在或顏色更加深。

遺傳與膚質的影響

事實上,並非每個人都會長雀斑。它在一定程度上和基因有關。膚色白皙且天然黑色素較少的人,更容易受到紫外線的影響,而產生或加深雀斑。尤其歐美血統者,其遺傳基因裡常見 MC1R 基因變異,導致毛髮顏色較淺、膚色偏白,也就更容易「曬出」雀斑。而亞洲人中,若父母一方有雀斑基因,也可能遺傳給下一代。

-----廣告,請繼續往下閱讀-----

「太陽之吻」與健康有關嗎?

雀斑本身是無害的,不會直接演變成皮膚癌。然而,它們的出現代表皮膚曾經受到過紫外線的刺激,若人們在相同條件下沒有做好防曬,長期累積的 UV 傷害可能導致細胞 DNA 損傷,讓皮膚老化、皺紋提早出現,甚至提高罹患皮膚癌的風險。因此,有雀斑的人不必過度擔心,但是也應該將之視為一種提醒,提醒自己需要加強日常的防曬措施。

雀斑無害,但還是要注意紫外線帶來的傷害。圖/envato

如何區分「日曬斑」與「老人斑」?

  • 日曬斑(ephelides):經常出現在皮膚較薄或常曬太陽的部位,如臉頰、鼻梁,夏天加深、冬天減淡。
  • 老人斑或曬斑(solar lentigines):較大、顏色較深,容易出現在手背、臉部。隨年齡增長、不會隨季節變淡。

如果皮膚上出現斑點且有快速變化,或顏色、形狀突變的情況,最好就醫檢查,以排除皮膚癌等風險。因為某些黑色素瘤或癌前病變,在早期也可能長得類似咖啡色斑點,必須由專業醫師進行鑑別診斷。

想要保護皮膚?防曬是關鍵

想要減少雀斑的生成或避免它們顏色變深,防曬是最有效的手段之一。無論是否有雀斑,紫外線皆會加速皮膚老化和傷害,因此建議做好以下幾點:

  1. 使用防曬產品:選擇符合自身膚質且 SPF 值足夠的防曬乳,並在外出前 15 至 20 分鐘均勻塗抹,並於戶外活動每 2 小時補塗一次。
  2. 配戴帽子與太陽眼鏡:多重物理隔離,可以更有效地保護臉部與眼周脆弱的肌膚。
  3. 善用遮陽工具:如陽傘、遮陽布等,減少直接曝曬在刺眼陽光下的時間。
  4. 避開強烈日曬時段:若時間允許,儘量在上午 10 點以前或下午 4 點以後再從事戶外活動,降低紫外線的曝曬量。

雀斑之所以容易在夏日高調現身,歸根究柢都是皮膚為了抵禦紫外線所做的「自衛行動」。面對這些「太陽之吻」,我們無需過度恐慌,因為它們本身無害;但也不該放鬆警惕,畢竟皮膚細胞受到紫外線傷害的警訊往往比想像中更容易被忽視。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
1

文字

分享

0
5
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。