0

0
0

文字

分享

0
0
0

免洗衣

陸子鈞
・2011/12/30 ・378字 ・閱讀時間少於 1 分鐘 ・SR值 529 ・七年級

-----廣告,請繼續往下閱讀-----

洗衣服很累嗎?科學家開發出一種自潔棉,未來或許只要晒衣服,不用洗衣服了!這概念並不新奇,當光打在一些分子上,會釋出電荷,也就是電子電洞(electron-hole pairs),會激發氧化反應(oxidation reactions),分解有機質-汙垢。不過光必須為紫外光,那只佔陽光的一小部分,所以這項技術無法廣泛被應用。然而,現在科學家嘗試在棉上包覆氮聯氧化鈦(N-TiO2),還有一層碘化銀(AgI)。在可見光下,兩種分子會互相作用,促使釋出電子並產生電洞,最後產生有效率的氧化反應。研究發表於《應用材料及介面》(Applied Materials & Interfaces)期刊,文中描述了這種實驗性棉料,在1000瓦的燈光下曝照兩小時,可以分解塗抹在上的橘色顏料(髒污)。不過當你想洗這種自潔棉料製成的衣服呢?沒關係,氮聯氧化鈦和碘化銀不會被洗掉。

資料來源:ScienceShot: A Shirt That Cleans Itself [15 December 2011]

文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

2
1

文字

分享

0
2
1
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
暗夜中「鬼魅蘑菇」的幽光
胡中行_96
・2022/06/23 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

雨後無月的冬夜,南澳的森林裡水氣氤氳。樹幹上參差交疊的扇狀物,正靜靜地散發冷白的幽光。[1]近看每片直徑 20 到 40 公分左右,[2]向外展開。若用相機去捕捉那毛骨悚然的氛圍,肉眼所見的白,則會在照片中變成詭譎的螢光綠。[1]

這不是靈異現象,而是澳大利亞「鬼魅蘑菇」(ghost mushrooms;學名:Omphalotus nidiformis)與生俱來的特質。[1, 2]

  

鬼魅蘑菇日夜迥異的面貌:A – 白天,B – 夜晚。圖/參考資料 2

  

蘑菇發光的原理

鬼魅蘑菇體內,有一種叫做「乙烯基吡喃酮」(hispidin)的「螢光素」(luciferin),會在「螢光酵素」(luciferase)的催化下,與空氣中的氧氣結合,產生「氧化反應」。此時所形成的暫時性產物,具有極高的能量。在接下來的還原過程中,便會釋放出「生物光」(bioluminescence)。[3, 4]

-----廣告,請繼續往下閱讀-----

  

拍攝鬼魅蘑菇的技巧

鬼魅蘑菇盛產的六月,正值南半球的冬天。[2]拍攝發光奇景最佳的戶外環境,必須不見月亮和其他任何的光害。[1]換句話說,有志之士要在攝氏 4、5 度的夜晚,摸黑找蘑菇,架設相機與腳架,再耐心地以慢速快門曝光。(給對專業攝影有興趣的讀者參考:墨爾本大學Paul Whitington副教授某次成功的拍攝數值,為 ISO 800,F/2.8,曝光 216 秒。)[3]

  

生物光的顏色

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色,跟相機拍到的一樣。肉眼所見卻非如此,是因為眼睛裡唯有超級敏感的「視桿細胞」(rod photoreceptors),能接收到微弱的生物光。偏偏視桿細胞不長在視網膜的正中央…[3]

-----廣告,請繼續往下閱讀-----

所以,如果哪天真有機會親眼目睹,請千萬別「正視」鬼魅蘑菇的存在,反而得用眼角餘光「偷瞄」它,[3]才會有較精確的體驗。

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色。圖/Climate Science Investigations

  

生物光的功能

無論顏色如何,鬼魅蘑菇的外表,對遊客來說,都稱得上賞心悅目。然而,它們原本發出生物光的目的,應該不是為了討好人類。曾有科學家假設它和巴西螢光蘑菇 Neonothopanus gardneri 一樣,透過在夜間發光,吸引昆蟲來協助散播孢子。可是 2016 年的一篇期刊論文,指出鬼魅蘑菇整日不熄燈,卻也沒因此拐到比較多的昆蟲。研究團隊於是認為鬼魅蘑菇的生物光,僅是代謝過程中的意外產物。[2, 3]

  

巴西螢光蘑菇Neonothopanus gardneri特寫:C – 日間,D – 黑夜。圖/Photochemistry and Photobiology

  

-----廣告,請繼續往下閱讀-----

發光蕈類的歷史

根據化石資料推估,世界上第一株發出生物光的蕈類,出現在 1.6 億年前的侏羅紀。[5]遲至公元前 4 世紀,亞里斯多德(Aristotle,384 – 322 BC)才寫下人類史上,關於生物光最早的文字紀錄,描述一根腐木(上面的蕈類),散發有別於火焰的光芒。[1, 6]17 世紀時,德國植物學家Georg Eberhard Rumphius(1627‐1702),隨荷蘭東印度公司派駐印尼。[7]他在《安汶島植物名彙》(Herbarium Amboinense)中,提到當地人手持泛著藍光的蘑菇當燈籠。[6]不過,生物光其實在深海生物身上較為常見;相對地,目前所知的 15 萬種蕈類裡,僅有 70 幾種能發光[2, 8]而鬼魅蘑菇的分佈又只限於澳大利亞的南澳和塔斯馬尼亞。[1]

  

玲瓏可愛的發光小菇。圖/維基百科

  

臺灣的發光小菇與相關研究

話說回來,觀賞自帶光芒的蘑菇,並不困難。臺灣本地就有幾種會發光的蕈類,在阿里山、溪頭、墾丁等地都看得到。[8, 9]它們隸屬世界三大發光真菌支系之一的「小菇支系」(Mycenoid lineage)。中央研究院生物多樣性研究中心的團隊,曾發表論文探討它們的基因,還被選為 2020 年《美國國家科學院院刊》(PNAS)的封面故事。中研院的新聞稿中指出,目前發光蕈類的基因已被用於各種領域,例如:追蹤癌細胞的移轉,或製造生物感測的環境汙染警示器。[5]看來發光蕈類,有比單純供人玩賞,更嚴肅的使命。

-----廣告,請繼續往下閱讀-----

  

參考資料:

  1. Glencoe’s Ghost Mushroom Lane begins to flourish after heavy rainfall (ABC News, 2022)
  2. Weinstein P, Delean S, Wood T, Austin AD. (2016) ‘Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects’. IMA Fungus (7): 229 – 236.
  3. Luminescent ghosts by A/Prof Paul Whitington (Life in a Southern Forest, 2019)
  4. Ke HM, Lee HH, Lin CYI, et al. (2020) ‘Mycena genomes resolve the evolution of fungal bioluminescence’, Proceedings of the National Academy of Sciences of the United States of America, 117(49): 31267-31277.
  5. 臺灣也有發光菇!中研院追溯基因演化史 找尋蕈類發光的意義 (中央研究院,2020)
  6. A History of Luminescence: From the Earliest Times Until 1900 by E. Newton Harvey (The American Philosophical Society, 1957)
  7. 尋找記憶的缺角:早期有關通草的記錄(國立臺灣大學)
  8. 螢光蕈(臺灣國家公園,2018)
  9. 施雨伸,2014,〈臺灣產螢光小菇的分布、分類及人工培養,並兼述一新種〉(臺灣博碩士論文加值系統)
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
1

文字

分享

0
3
1
CO2 不是廢物!以嶄新材料推進人造光合作用——林麗瓊專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/22 ・5496字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

  • 2017 年「台灣傑出女科學家獎」傑出獎第十屆傑出獎得主

在辛亥路側的臺灣大學凝態科學研究中心,曾為中心主任的林麗瓊帶著我們上上下下好幾層樓,如數家珍地說明各設備的能耐,以及學生要如何經過她紮實訓練跟親自審查才能上機。「還有好多,今天沒時間看」,站在她稱為「起家本」的第一台自製反應爐旁,她說當年太貪心,加了多個 Port,增加了殘餘氣體吸附而使樣品被污染的風險。然而這台由她自己設計、自己到工廠請人開模製作的機器,在她細心調教跟利用下,創造了許多研究突破。我們請林麗瓊與這座別具意義的反應爐一起合照,她則邀請在旁的學生 Suman 一起入鏡。

來自伊朗的 Suman 她選擇來台灣學習,一方面是因為台灣是個很安全的地方,另一方面就是因為林教授是很棒的楷模。「那你會在台灣待到什麼時候?」我問,她回說「這要看我什麼時候拿到博士學位。」「那就是要看林教授囉?」「不是,是要看她自己何時取得足夠的進展。」林麗瓊笑著說這句話,也透露出她指導學生的方法:不由上而下決定主題,讓學生自由探索、從好奇心出發。

回到辦公室,林麗瓊從玻璃櫃中拿出一幅裱框的照片,裡頭是朵特別的玫瑰。「本來該長成平的、漂漂亮亮的磊晶,結果長成一朵花。」

-----廣告,請繼續往下閱讀-----
林麗瓊教授與我們分享學生的作品——〈Formosa Nano-Rose〉

拿著學生的「作品」,她笑說通常學生若做出這樣的磊晶應該要挨罵才對,然而學生發揮想像力,將奈米尺度的不規則形狀染上玫瑰紅,參加美國材料學會(Materials Research Society)年度的科學即藝術(Science as Art)競賽,拿到首獎,還有外國人寄信來,希望能取得圖片,用來求婚。

在林麗瓊經營帶領下,聚集多國、多領域人才的研究團隊看似和樂輕鬆,其實他們正探索一個可能改變人類未來的終極領域:光觸媒。

光觸媒的莫大潛力

如果要列出如今人類面對的最大挑戰,抑制二氧化碳排放、讓空氣中的二氧化碳量回到 350 ppm 的安全水平以下,不讓氣候危機加劇,肯定是其一。(順帶一提:2021 年 的 1 月是 413 ppm 上下。來源) 

就算逐步淘汰煤炭跟天然氣,改成再生能源發電,我們的生活依舊仰賴大量的石油化學產品,大氣跟海洋中依然有過量的 CO2,種樹也難趕上森林被砍伐跟遭野火肆虐的速度。然而林麗瓊另闢蹊徑,從拿手的材料科學著手,正研究如何將二氧化碳還原成低碳氫比燃料,關鍵就在於高效能的光觸媒。

-----廣告,請繼續往下閱讀-----

這當然不是林麗瓊一開始就研究的主題。她於 1989 年取得哈佛大學應用物理博士學位後,馬上被美國奇異公司研發總部材料研究中心延攬為終生聘雇研究員,也是當時該研究中心唯一的亞裔女性。那時她加入的團隊裡有物理學家、化學家、電子電機工程師等,研究的主題從飛機引擎到核能電廠五花八門,例如他們開發新型飛機引擎的材料跟設計,讓飛行速度更快、更省燃料。

1994 年回台後,她返台主持凝態中心的尖端材料實驗室。「一開始做鑽石薄膜,後來做奈米碳管、奈米線、石墨烯。」開發這些碳基的低維度奈米材料,並使其展現出新奇特性是她的拿手絕活。既然現在二氧化碳成了眾矢之的,那就換個角度,把它從廢物變寶物吧!

「如果只是要把二氧化碳轉化成低碳氫比的燃料,或是高工業價值的原物料,方式不只有光觸媒,用電催化也可以。」林麗瓊表示電催化成熟度比光催化高,發展歷史久,但是腐蝕容易造成污染,而且 CO2 與水的溶解度低、需要額外耗電,因此不見得是最佳選項。若採用光觸媒,只要將工廠的排氣經過導管收集,將 CO2 分離,進入可以接受光照的反應爐,搭配適當的材料(如金屬氧化物),就能產生光催化效應,把 CO2 變成甲醇、甲烷、乙醇、乙烷、乙醛等。

「關鍵步驟就是那個材料的觸媒,它的催化功能性要夠,那怎樣功能性才會夠?這就有我們做材料的人可以玩的空間。」林麗瓊表示這樣的材料須具備半導體特性,也就是其特有的「能待結構」或「能階」,能接受光子的能量而激發,同時「能隙」不能太大也不能太小。目前已經商用的材料為二氧化鈦(TiO2),然而其吸收光需要 3.2-3.4 電子伏特(eV)的能量,也就是得用波長很短的紫外光,限制了發展。 因此她將重點放在找尋能夠吸收可見光的材料與最佳結構,提升轉化效率。「可能是1.7、1.8(eV)是最好的……就同樣一個材料,它本質可能是 1.5 eV,但位置不對,所以我們就想辦法做一些缺陷工程啊、做一些參雜、複合的結構。」

-----廣告,請繼續往下閱讀-----

這樣的材料在吸光後會產生電子電洞對,林麗瓊生動地形容「要活活的」,才能跟二氧化碳與水起反應。意思是說這材料得身兼多職,先吸可見光、然後拆解電子電洞對,傳達到表面後,能接著活化其實很穩定的二氧化碳,再加上水氣才有可能轉化成甲醇等產物。即使是同一個氧化亞銅,他們也發現邊邊角角的活性才高,「所以就有辦法跟 CO2 招手,黏住又不能太黏喔!太黏 CO2 不跑啦!就把活性點通通給蓋住蓋死了。」

為了讓二氧化碳若即若離、欲迎還拒的戲碼能在奈米尺度上演,身為導演兼製作人的林麗瓊與團隊花了大把工夫選角(材料),如今已獲得初步的成果。

「在產量上,雖然還不是很高,但是有機會到 1% 了。假以時日,push 到 10%,應該是有機會」。她表示儘管還需要很多努力,而且後續也還有產物選擇性與分離的課題,但一關一關解,就能將二氧化碳變成原物料,邁向循環經濟「零廢物」的目標。

林麗瓊表示反應過程中的產物分析、以及反應控制的關鍵機制需要徹底釐清,才能知道到底材料的「什麼」在做出貢獻,例如是形狀、是位置、是大小、還是其他性質?她用各種技術來監測,將這過程比喻為「盲人摸象」,得一片一片摸熟了才能前進。雖然離製程成熟跟產業化還有很長的路,她發現這個領域受關注跟投入的程度在全球都大大提升,從她剛開始時一年不超過 50 篇研究,到現在每年破千篇。

-----廣告,請繼續往下閱讀-----

從半導體、光電、能源材料、奈米薄膜到光觸媒,研究範圍廣泛的林麗瓊笑稱自己喜新厭舊又隨性,但萬變不離其宗:「我們就是玩材料的,我們玩得很開心啊!」

Welcome to the jungle 

外表溫和沈著、說話總是體貼地再三確認我們能否理解的林麗瓊,得過台灣與世界各國的獎項,也曾被選為美國材料學會董事會成員,曾任眾多知名學術期刊、專書的編輯與學術會議的主席,成就非凡。然而正如她研究的光觸媒,對於許多學生來說,她也是一位如光般賦予能量、催化著他們的觸媒。

林麗瓊坦言自己「鍛鍊很久」,努力學習理解各種關係必然遇到障礙,有時轉個彎就撥雲見日的道理。她不會給剛進門下的學生太明確、太細節的題目,而是讓他們先朝一個方向探索看看,約略三個月後再請他們提出 Proposal,她就在這段時間內觀察新學生與其他同學的互動,了解其性格,能力,再依此給出建議。

她將自己在美國奇異公司研發總部任職時學到的團隊合作方式,帶入自己的實驗室。「有的人性格像獅子、有的像兔子。但不能都一直是獅子或兔子」她順著學生的性格,鼓勵其發揮,但也鼓勵他們學習彼此的優點,懂得變換。

-----廣告,請繼續往下閱讀-----

她說有些學生活動力很強,坐不住,沒辦法一直待在機器前;反過來有些學生開工之後,一天不去開機就覺得不舒服,連機器壞了也不肯停。但就是這樣不同的性格,獲得了意想不到的發現。雖然有時會建議學生互相合作,但她的安排也不一定成功,反而是讓資深的、主導性強的學生們發展、組隊,結果更好。她則透過每週定期的 Group meeting 發揮觸媒的作用,激發團隊成長。「我關心他們怎麼發展,可是絕對不強迫。有點黏又不會太黏。」她微笑說。

是傑出科技人,也是女人

2017 年得到第十屆「臺灣傑出女科學家獎」時的林麗瓊,已得過科技部傑出獎、教育部學術獎與國際上的諸多不分性別的榮譽,對於冠在科學家獎前的「女」字,很高興能獲得肯定,也自覺要承擔更多責任。然而在 30 年前,類似的經歷曾經困擾過她。

當她被奇異聘為終生職研究員時,她在哈佛的一位韓國同學則失之交臂,扼腕地對她說「都是因為妳是女生啦。」林麗瓊覺得自己夠認真、夠努力,當然有資格加入頂尖的企業。但反過來說,那位韓國同學也很認真、很努力,所以……是臨場表現有差別?還是真的因為她是女性而成了保障名額?

「不瞞你說,這的確是很矛盾、很複雜的一種心理。」她說:「如果只是因為我是女生,這個對我很傷啊!是不是?」後來在物理學會女性工作小組內討論這種「肯定」時,她漸漸想通,認為即使有這種可能,她也要勇敢去爭取,放下不舒服的感覺,不要覺得自己是被憐憫、被施予,而是要當第一個衝破現況者,別人才有機會跟上。

-----廣告,請繼續往下閱讀-----

「有一些東西是非常根深蒂固的,男生女生都是這個文化的受害者。」她分享自己剛加入奇異公司的一段經歷:當時懷第二胎的她,發現好幾個月都沒有被分配到任務,也沒有被安排出差到工廠幫現場面臨的挑戰找題目。於是她鼓起勇氣去問經理,經理反而愣住,回答說就是因為知道她懷第二胎,家裡還有一個兩歲孩子,怎麼能讓她做這些又累又辛苦的事?

這樣的善意跟體貼,若說是歧視,林麗瓊認為就太重了,但結果卻幽微地害她投閒置散。於是她向經理明確表示自己先生非常支持,而且有保母能照顧小孩,承接任務沒有問題,才改變了這種不利自己發展的狀況。

「我自己覺得物理並沒有性別的問題,覺得好玩又可以發揮,學科本身不會阻擋女生。那是我們的環境嗎?還是什麼?」物理學界的女性比例「是可怕的低」,林麗瓊說大學部其實有 20-30% 是女生,研究所也可能還能維持 10-20%,但到教職就不到 5%。她認為這個現象不能簡單歸因,需要抽絲剝繭。舉例來說,由於她與先生(陳貴賢,中研院原子與分子科學研究所研究員)密切合作,剛回國任教提交計畫書審查時,曾被問「貢獻到底在哪裡?」但同樣的問題,她先生卻不會被問。她認為審查者不見得有意打壓,而是文化養成的習慣。要讓其他人知道自己有真功夫,需要一段不短的時間,她已十年沒被這樣問了,但的確成了女生額外要處理的。

得獎後,她參與台灣萊雅與吳健雄學術基金會合辦的高中女性科學教育巡訪計畫,每年都與許多年輕學生面對面交流,座談時間常互動熱烈到讓她趕不上搭車時間。透過這個獎跟活動,能讓許多學生有個學習楷模,提出心中的問題,幫她們去除刻板印象,其實讓她備感欣慰。她甚至因此收了高中生來實驗室實習,但她強調來的高中生得要「玩」、藉實習想像未來的生活,而不是為參加科展得名而來。

-----廣告,請繼續往下閱讀-----

對林麗瓊來說,大她四屆,同樣就讀臺大物理系的四姐是最接近的楷模,也因此她學習科學一路以來備受鼓勵而沒受阻礙。另外,曾返台演講的吳健雄則是她朝聖的偶像,曾親睹吳健雄在新竹演講風采的她說自己非常震撼。後來與自己的大哥討論該不該朝物理學邁進時,大哥對她說「吳健雄不就是物理學家嗎?為什麼不呢?」她也因此非常感激。

她給予學生的力量,也承襲自她在哈佛的指導教授 Frans Spaepen。她記得在考慮該留在哈佛做博後,還是去產業界資源豐沛的實驗室時,Spaepen 教授對林麗瓊說,若她能留下來當博後,他會很高興,但不必將哈佛當作第一或是唯一的選擇,該把握機會到外頭更大的世界看看。這番話讓她至今銘記於心,也一直將這種「不為自己設限」的理念傳達給每一位學生。

「你覺得你的興趣在哪、你的才能在哪,就走走看,不要劃地自限。刻板印象是別人的刻板印象,若連自己都有刻板印象,當然就沒救。」身為物理學界的頂尖女性科學家,林麗瓊參與、籌辦了不少推動女性加入科研領域的工作,例如與物理學會女性工作委員會籌拍《物理好丰采》影片,協助成立臺灣女科技人學會等。她說,每個人有各自的問題,但有些問題有共通性,就該以團體的名義來爭取。

例如她參與的物理學會女性工作委員會曾以團體名義向國科會提案,讓有生產事實的女性研究者在提出研究計畫時,可以將過去七年內的發表成果納入,而不是原本的五年,否則女性研究者很容易因為生兒育女放慢進度而被系統性地歧視、或是擔心可能耽誤發展而乾脆不生育。

林麗瓊認為自己沒有天花板,但她不能代表所有女性研究者,因此「如果有需要去衝破的,一起去衝破吧。」她說。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia