0

0
0

文字

分享

0
0
0

好的壞的都在鼻子裡——超級細菌MRSA與它的剋星

范君寧
・2016/09/12 ・1192字 ・閱讀時間約 2 分鐘 ・SR值 508 ・六年級

-----廣告,請繼續往下閱讀-----

編譯/范君寧

2311145896_2c2495caef_b
鼻子裡住著很多我們異想不到的東西。圖/Flickr

根據《自然》(Nature)期刊指出,科學家發現一種全新的抗生素,而且就在我們的鼻子裡面!這種抗生素是由人類鼻子裡的細菌製造而成,在老鼠實驗中,這種抗生素能夠成功消滅潛在致命的「超級細菌」—— MRSA(Methicillin-Resistant Staphylococcus aureus,抗藥性金黃色葡萄球菌,又可稱耐甲氧西林金黄色葡萄球菌)。

MRSA 是什麼?很可怕嗎?

MRSA 是「金黃色葡萄球菌」的其中一種特殊菌株。在我們生活中,金黃色葡萄球菌其實非常常見,它們普遍存活在鼻腔、咽喉、皮膚,全世界約有三分之一的人口體內有金黃色葡萄球菌,不過沒有對人體造成任何危害。但當皮膚表面有傷口時,這些細菌很容易引起感染,而這類感染通常藉由抗生素治療。

然由於細菌基因經過不斷變異而產生抗藥性,即使使用抗生素也愈來愈難成功治療。這些對盤尼西林、紅黴素、四環酸、甲氧苯青黴素等常規抗生素產生抗藥性的葡萄球菌即被稱為 MRSA

-----廣告,請繼續往下閱讀-----

被稱作「超級細菌」的 MRSA 非常難治療,據統計,單在美國每年就有平均 11,000 人因 MRSA 喪生。

同為鼻子出身!MRSA 的剋星

能夠抵抗 MRSA 的勇士,竟然也是從葡萄球菌出身!?

德國杜秉根大學(University of Tuebingen)的科學家皮歇爾(Andreas Peschel)及其研究團隊於《自然》(Nature)期刊上表示,他們發現一種有潛力能對抗 MRSA 的新興士兵:種由路鄧葡萄球菌(Staphylococcus lugdunensis)製造產生的分子,皮歇爾將之取名為路鄧素(Lugdunin)。

為了了解金黃色葡萄球菌在人類鼻子中的活動,皮歇爾團隊研究其生活方式、以及競爭對手,因此偶然發現了「路鄧素」。路鄧葡萄球菌主要生活於人類鼻腔處,全世界僅有 9% 的人天生攜帶路鄧葡萄球菌。透過 187 個病患案例的研究,皮歇爾團隊發現,鼻子裡天生攜帶路鄧葡萄球菌的人,感染金黃色葡萄球菌的機率是沒有攜帶者的六分之一

-----廣告,請繼續往下閱讀-----

 

老鼠實驗中,研究團隊以金黃色葡萄球菌感染老鼠皮膚表面,再塗以路鄧素軟膏,發現路鄧素軟膏不只治療了皮膚表面,也殺死了皮膚深層的細菌。另外,再噴了路鄧素到棉鼠(Sigmodon hispidus, 英文俗名 cotton rats)鼻子裡之後,研究團隊發現,棉鼠鼻子裡的金黃色葡萄球菌數量大大降低。科學家合理推測路鄧葡萄球菌能夠抑制有問題的細菌的發展,並且可以研究發展成預防劑——例如噴鼻劑,防止有異變風險的金黃色葡萄球菌存活在鼻子裡。

9674809423_04c39bc61d_o
英勇的路透葡萄球菌(好像西米露)。圖/Flickr

但路鄧素最後是否能發展成供人類使用的抗生素,仍是一個值得考驗的問題,畢竟現今的實驗只用於老鼠身上,於人體是否同樣有效還有待研究。但科學家對這個神奇的葡萄球菌抱持希望,願有朝一日 MRSA 再也不會是令人聞風喪膽的超級細菌,我們能善用鼻子裡的小東西,攻克同樣是鼻子裡的敵人。

原文出處:The nose knows how to kill MRSA, Anna Nowogrodzki, July 27, 2016

參考文獻:Antibiotic Resistance, Mutation Rates and MRSA, Leslie Pray, 2008

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
范君寧
2 篇文章 ・ 0 位粉絲
泛科學實習編輯,政大新聞系,一個食量很大的奇怪女子,近期的目標是每天好好運作腦袋,不要生鏽。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
一餐變災難:台北素食餐廳爆食物中毒,這些細菌你不可不知!
careonline_96
・2024/08/30 ・2532字 ・閱讀時間約 5 分鐘

北市素食餐廳的食物中毒事件已造成二死四危急,引發眾人關注。食物中毒可能是因為食物內含有細菌、病毒、或寄生蟲,當這些病菌持續在腸胃道理作亂、生長,就會引發不適。另外,食物中毒也可能與細菌製作出的毒素有關。

食物中毒的症狀

食物中毒算是個很廣泛的說法,包含了各種不同的細菌或病毒感染,多數在幫表現症狀的初期,我們還不知道究竟是哪一種細菌或病毒造成的,因為一般食物中毒還輕微的時候,就是腸胃炎的症狀。患者會肚子絞痛,想要跑廁所,開始有腹瀉症狀。這時要注意自己的糞便是純粹水便,還是含有血絲或大量的血便,這與猜測致病原有關係,要記得就診時告知醫師腹瀉的狀況。另外,還要告知有沒有發燒、嘔吐等情形。

另外,我們也需要注意這些噁心嘔吐及腹瀉症狀發生的時間點,不同的細菌或病毒造成症狀的時間不一樣,有的短至三十分鐘內患者就開始上吐下瀉,有的則是要過上一星期才發病。不過通常是吃到含有病菌的食物後一到三天發病。

多數的食物中毒症狀並不嚴重,很多人會覺得自己只是腸胃不舒服一下下,拉個幾次就會過去了。然而如果有以下狀況,最好趕快就診:

-----廣告,請繼續往下閱讀-----
  • 脫水嚴重:尿尿的量變少,覺得頭暈目眩,嘴巴很乾
  • 一直吐:什麼東西都吃不了,一進食就吐
  • 一直拉:成人拉肚子超過兩天,或是小孩拉肚子連續一天,就算是嚴重了。如果是新生兒,只要看到腹瀉,最好還是就醫。看到血便也是要就醫。
  • 肚子很痛或發燒
  • 家人發現患者意識狀況變差,或發現有複視皮膚變黃等等狀況。

引起食物中毒的知名病菌及其特色

接下來我們來看看幾個容易引起食物中毒的細菌或病毒。

  • 大腸桿菌(E. coli)

最常見的狀況是吃到沒有完全煮熟的絞肉,像是沒煎到全熟的漢堡排。不過大腸桿菌也會出現在受到污染的蔬菜(像是生菜沙拉)、水果、或生水之中。

  • 沙門氏菌(Salmonella)

沙門氏菌存在沒有煮熟的肉類與蛋類食物,或是喝到沒有完全經由巴斯德滅菌過程的乳製品。

  • 金黃色葡萄球菌(Staphylococcus aureus)

備餐的時候沒有先洗手,而處理食物後沒有再經過烹煮,像是切肉片肉排,切三明治或包裝三明治,就可能讓人因金黃色葡萄球菌而食物中毒。

-----廣告,請繼續往下閱讀-----
  • 產氣莢膜桿菌(Clostridium perfringens)

產氣莢膜桿菌存在自然界,可以形成具有耐熱性的孢子,有些甚至在沸水中仍能存活許久。因此,除了生肉、蛋類、奶類可能含有產氣莢膜桿菌外,土生土長的蔬菜、穀類也可能含有產氣莢膜桿菌。當燉煮的肉湯、肉汁放在室溫一陣子,沒有放到冰箱冷藏的話,可能會引起食物中毒。

  • 肉毒桿菌(Clostridium botulinum)

這屬於少見但容易致死的食物中毒。肉毒桿菌是存在自然界土壤與水源的常見細菌,如果沒有藉由煮沸煮熟來殺死肉毒桿菌的話,是無法停止其生長的。最容易造成食物中毒的狀況有兩種,一種是吃到沒有正確保存的醃漬物或罐頭食物,尤其是居家自己醃漬的小品,無論是醃菜、醃魚、醃肉,都可能會導致肉毒桿菌滋生。另一種傳染途徑是讓小於一歲的幼童吃到蜂蜜或玉米糖漿,裡面的孢子可能含有肉毒桿菌而造成幼兒食物中毒,記住記住,千萬不要以為讓幼兒吃蜂蜜很營養喔,會因為感染肉毒桿菌而致死的。

肉毒桿菌會影響神經肌肉的控制,造成的食物中毒特色是患者的視力出現複視,講話講不清楚,肌肉無力,無法吞嚥,有這種狀況務必趕緊就醫。

  • 李斯特菌(Listeria)

李斯特菌可以存在未經巴斯德滅菌過程的牛奶及乳酪中,也會存在於豆芽、瓜類、和香腸熟肉裡。

-----廣告,請繼續往下閱讀-----
  • 諾羅病毒(Norovirus)

諾羅病毒的傳染能力很強,只要碰到帶有諾羅病毒的餐桌表面、再將食物送往口中,就可能感染。因此只要有個人感染諾羅病毒,很容易在與他人共餐的同時藉由分享食物、備餐等狀況而傳給其他人。

預防食物中毒

  • 擤鼻嚏、咳嗽、抽菸、上廁所之後,請記得都要好好洗手
  • 如果是備餐的人,請好好清洗蔬菜及水果,用來備餐的表面及餐具也都要在準備食物之前好好清洗。
  • 肉類、蛋類等務必都要好好煮熟,不要讓生肉或未煮熟的肉或肉汁去污染到其他食物。
  • 不管是煮過的食物或生肉,不要任其停留在室溫內超過兩小時,放兩個小時後的食物都不安全,請儘早把食物冰到冰箱。解凍的食物要趕快煮一煮,不要放在室溫過久。
  • 保存食物的時候,生的肉類要與蔬菜水果、煮過的食物、或加工食物分開擺放。
  • 買含有沙拉醬、美乃滋的食物沒吃完一定要冰起來。
  • 不知道放了多久的食物請丟掉。一打開有味道,或是罐頭蓋子鼓起的一定要丟掉。

預防食物中毒的重點是自己常洗手,並好好保存食物,備餐時也要用心。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
人類用「快樂」來分辨氣味?快樂調性如何影響我們的嗅覺!——《你聞到了嗎?》
臉譜出版_96
・2023/02/08 ・1759字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

令人不悅的氣味

許多氣味對於人類的鼻子來說存在既有的價值、感情價(valence,或稱快樂調性﹝hedonic tone﹞)。我的好友諾安.索貝爾(Noam Sobel)是以色列魏茲曼科學研究所(Weizmann Institute of Science)的知名神經科學家,他嘗試找出人類分類氣味的方式,以及各類別氣味分子的化學性質,然而他找到唯一的重要參數就是所謂的快樂調性——也就是氣味本身聞起來是香是臭,令人開心或不悅。

許多氣味對於人類的鼻子來說存在既有的價值、感情價。圖/elements

氣味分辨實驗:關鍵竟是「快樂感」

索貝爾和他在魏茲曼的研究團隊與加州大學(University of California)神經科學研究所及心理學系的科學家攜手合作,進行一項複雜的實驗,探究人類嗅覺是根據哪些原則將氣味分門別類。

他們先請一百五十位香水及氣味專家,根據一百四十六種性質評斷一百六十種氣味分子的特質;這些性質分類當中包括了「甜香」、「煙燻味」、「霉味」等等。研究團隊接著分析這些資料,找出最能夠分別不同氣味的單一要素,發現最重要的分辨關鍵還是快樂調性——氣味讓人感受愉快的程度。

團隊發現最重要的分辨關鍵還是快樂調性──氣味讓人感受愉快。圖/elements

氣味有各式各樣的調性,從好聞的「甜美」、「馥郁」到難聞的「腐壞」、「令人作嘔」都有。研究人員接著針對各種化學物質進行同樣的統計分析,將每個化學物質當中超過一千五百種的性質都納入考量,分析出來的結果依然顯示快樂調性是判別關鍵。

-----廣告,請繼續往下閱讀-----

因此研究人員認為,我們可以單靠氣味的分子結構來判斷某種氣味對人類來說好不好聞。

分辨氣味好壞:「大腦偏好」還是「化學特性」

耐人尋味的是,這項實驗也表明,人類鼻子裡的氣味受體往往是根據氣味令人愉悅與否來分門別類並做出反應。這並不意味著不同的文化背景或生命體驗不會影響我們對氣味的感受或是嗅覺細胞組織的方式,但人類對於最令人愉悅或討厭的味道類型的確有共通感受。

諾安對這項實驗做出以下結論:

「我們的研究結果發現,人類對氣味的感受至少有一部分是根植於大腦、與生俱來的偏好。即便不同個體之間對於氣味的感受確實存在某些彈性,也絕對會受到個人生命經驗影響,但人類判斷氣味宜人與否的絕大部分因素還是來自於氣味本身在物理世界呈現的性質。因此我們可以運用對化學物質的理解,預測某種新物質的氣味會為人類帶來何種感受。」

值得注意的是,許多研究都指出年幼孩童不像大人會明確分別氣味是令人愉悅還是作噁;他們會表達氣味是強烈或微弱,但通常不會直接分別氣味的好壞。

-----廣告,請繼續往下閱讀-----
幼孩童會表達氣味是強烈或微弱,但通常不會直接分別氣味的好壞。圖/elements

並非人人都是「好鼻師」!

整體來說,我們很難用快樂調性以外的標準來分類氣味,並且對大多數人而言,用大家都能夠理解的詞彙來描述氣味實在十分困難。正因為理解了這點,魏茲曼研究團隊將研究焦點轉為嘗試預測某種分子結構的氣味會與哪些形容詞彙連結在一起;不再只關注氣味聞起來「如何」,而是嘗試預測兩種不同氣味帶來的感受會相似還是不同。他們也因此能夠根據氣味混合物的分子結構,運用固定的評分邏輯來分類任何兩種不同的氣味,藉此反映出氣味之間的相似性。

魏茲曼研究團隊表示,這項研究結果能夠成為氣味數位化的基礎,但還需要更多時間才能知道這個研究方向能否引領他們更接近氣味數位化的遠大目標。再者,如果想要迎接未來全面數位化的夢想,還有一大挑戰——人類極不擅長分辨並指稱氣味。

——本文摘自《你聞到了嗎?:從人類、動植物到機器,看嗅覺與氣味如何影響生物的愛恨、生死與演化》,2023 年 1 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。