1

0
0

文字

分享

1
0
0

天然ㄟ不一定尚好,加工食品可能更經得起檢驗—「PanSci Talk:天然ㄟ尚好?添加物都是商人的陰謀?」

衛生福利部食品藥物管理署_96
・2016/08/01 ・2186字 ・閱讀時間約 4 分鐘 ・SR值 504 ・六年級

-----廣告,請繼續往下閱讀-----

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

文/陳妤寧

天然ㄟ尚好?

先暫不討論是否為商人的陰謀,關於「天然」,海洋大學食品科學系的助理教授張祐維在這場 PanSci Talk:「天然ㄟ尚好?添加物都是商人的陰謀?」推翻了很多人的既有印象。專長在食品分析檢驗的張祐維,謙稱自己還不是最專業,但「我懂得比你們多一點點,我的疑慮比你們更多。」

張祐維
海洋大學食品科學系的助理教授張祐維。

「晚餐隨便吃一個便當,其中添加物的身影無所不在。添加物在臺灣的食安法規中採正面表列,也就是說只分成兩種:政府允許可以合法適量添加的、以及沒有出現在清單上的,若添加了沒出現在清單上的添加物那就直接等同違法。話說回來,我們在家自己煮東西的時候,想加什麼調味就加什麼,也是沒有受到政府的管控……。」

-----廣告,請繼續往下閱讀-----

天然食物裡的不安全份子

回應「天然ㄟ尚好?」這個疑問,張祐維先貼出了黃豆、雞蛋、生魚片這三種食物的圖片。

「這三個食物看起來都很天然,天然是否等於安全?安全的定義是什麼?」

黃豆很天然?但它具有會阻礙胰蛋白酶(Trypsin)功能的胰蛋白抑制成分(Trypsin Inhibitors),進而使蛋白質消化不良。通常必須採加熱方式破壞之。

雞蛋很天然?生吃的話,其中的抗生物素蛋白(Avidin)會抑制人體吸收維他命 B7,容易造成脫髮。鳥禽類很容易伴隨微生物的問題,由於屎蛋混雜的環境,使得沙門氏桿菌容易滋生。「洗選蛋相對安全一些。」張祐維說。

生魚片很天然?除了也有些看不到的微生物和寄生蟲,還有海洋中重金屬(如汞、砷、鉛)透過食物鏈累積的問題。

-----廣告,請繼續往下閱讀-----

張祐維又以鹽為例,鹽的原料來自「天然的」海洋,但天然的海洋裡卻有越來越嚴重的重金屬污染問題。「以臺灣來說,考慮到附近水域的汙染狀況,現在都是進口國外的鹽。」採購鹽的時候,罐子上會標示原料、添加物、產地等資訊,「但你無法知道它來自於一片乾淨的天然海洋、還是污染過的天然海洋?」

640px-Salt_Farmers_-_Pak_Thale-edit1
若是我們買的「天然」海鹽來自受到汙染的大海,那麼這還是我們要的「天然」嗎?圖/By JJ Harrison – Own work, CC BY-SA 3.0, wikimedia commons.

更好的生活:包括新鮮、衛生、安全的飲食

「食品科技跟著人類文明一起進化,知識和科技讓人類過上更好的生活。」

現代人走進超市就可以買到真空包的鯖魚片,古人則用曬魚乾的方式保存漁獲,「因為微生物容易以水做為介質,接觸營養物之後進而滋生。」除了減少水份,利用鹽來脫水、減氧、抑菌,也是傳統醃製食品的常見手法。

然而,看似傳統又天然的食鹽,毒性卻比己二烯酸、苯甲酸鈉、丙酸這些防腐劑來的更高——只需要相對少的劑量,就足以在急性毒性試驗中使實驗動物半數死亡。(註:即半致死量,50% lethal dose,LD50)「新聞報導曾有家長在配方奶粉中添加了鹽、試圖增加嬰兒食慾,卻導致嬰兒高血鈉症而洗腎甚至喪命。這就是因為嬰兒代謝鈉的能力還很有限。」

回到鯖魚真空包的技術,由於鯖魚的油脂含量很高,若接觸到空氣,容易氧化產生油耗味,「聞起來就像抽油煙機的味道一樣。」食品科技的發達,促成了食品在全世界的流通,在世界各地進出口。「就像很多人愛吃的藍莓,必須從比較高緯度的產地進口。而藍莓本身很脆弱、保存不易,如果做成果乾的話,又是一個方法。」

-----廣告,請繼續往下閱讀-----

 「工廠加工食品的稽核嚴格,經常比起傳統加工食品還來得更安全衛生。後者的製造環境有無蟑螂老鼠,都必須仰賴老闆一人的衛生習慣和良心。」

食品科學背景的張祐維,對添加物採取了比較正面的態度。「我個人會把食品添加物當做食品科技的一部分,豐富我們飲食的方式和內容,甚至讓我們吃的東西更新鮮、衛生、安全。」

Pansci talk

真實風險和內心恐懼並不成正比

難道食品添加物都人畜無害?難道我們對於食品添加物的煩憂都是多慮了?

 「量不要太多,都不會有事。」

以農藥用量極多的草莓為例,由於法令限制的殘留量非常嚴格,「坦白說,即使檢驗出超標,也都還距離發揮毒性的標準有很大的距離,難以對身體造成傷害。」

台灣大學食品科學研究所的許庭禎副教授補充,食品的風險,取決於「危害性」加上「暴露量」,危害性大的成份吃一點點,並不會比危害性小的一次吃很多的風險要來得大。「即使是水,你一次快速喝完六公升也會中毒送醫院。」

-----廣告,請繼續往下閱讀-----

而我們日常生活中如果多樣化地攝取飲食,其實都很難讓單一添加物累積到足以傷害人體的劑量。以香腸與亞硝酸鹽這對萬年組合來說,「唯有低酸性的環境才能抑制肉毒桿菌生長,香腸不可能做成那麼酸,只好使用亞硝酸鹽來抑制肉毒桿菌。」根據農委會公告,一般香腸的殘餘量限制是 70 ppm,青菜裡的可高達 7000 ppm。「你很難吃香腸吃到這麼多。」

無論如何,我們總是希望「歹東西」吃的越少越好,張祐維給的建議是從自己的料理習慣開始改變。「不要一次煮太多,就不會吃隔夜菜,就會減少對食物保存的依賴。」

「如果因為看到標示很長就決定不買,哎,難道廠商這麼誠實對待我們也錯了嗎?」張祐維笑著提醒聽眾,食藥署的網站有上許多對研究者和大眾都很有用的資訊可以查詢,我們因為對於添加物長長一串的化學學名而害怕,其實並不實際。

大合照

文章難易度
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
2

文字

分享

0
0
2
這樣吃安全嗎?用科學去看「劑量」與「食安」
衛生福利部食品藥物管理署_96
・2023/10/06 ・2743字 ・閱讀時間約 5 分鐘

本文轉載自食藥好文網

  • 文/黃育琳 食品技師

你喜歡吃香腸嗎?香腸嚐起來不但鹹甜多汁,飄散出來的香氣更是令人口水直流,是日常的菜色之一。

然而,香腸的內部環境容易滋生肉毒桿菌,並產生對人類最強的毒素「肉毒桿菌毒素(botulinum toxin)」,只需要 1 克便能毒死一百萬人。

為了避免吃香腸出人命,則需要在香腸內添加亞硝酸鹽以抑制肉毒桿菌生長,但亞硝酸鹽碰到二級胺(通常不新鮮的肉類或海鮮因產生發酵作用或腐敗而生成)可能會產生致癌物質亞硝胺(nitrosamines),一種經動物實驗結果顯示會導致腫瘤的致癌物質。

-----廣告,請繼續往下閱讀-----

天啊!聽起來加與不加,兩邊都很不妙,那我們為什麼還繼續吃下去呢?

這裡忽略了一個很重要的資訊,若導致亞硝酸鹽中毒,需要有一定「劑量」。我們應該去思考,人類如何在不會導致中毒的劑量下,有效運用亞硝酸鹽這個物質 [1]

毒理學中最重要的概念「劑量」

亞硝酸鹽是衛生福利部食品藥物管理署正面表列的合法食品添加物,只要按《食品添加物使用範圍及限量暨規格標準》限量添加(劑量遠低於導致中毒的劑量),那它對人體不但沒有危害,反而能讓我們免於受到肉毒桿菌毒素的威脅。

若是選擇完全不使用亞硝酸鹽,那麼肉毒桿菌毒素中毒的風險則會大大增加。相較之下,使用亞硝酸鹽必然安全許多,既然這樣,世界上還有無毒物質的存在嗎?

-----廣告,請繼續往下閱讀-----

毒理學之父 Paracelsus 先生(西元 1493-1541 年)曾說:「所有化學物質都有毒,世界上沒有不毒的化學物質,但依使用劑量的多寡,可區分為毒物或藥物。」這也是毒理學最重要的基礎概念 [註]

所有化學物質都有毒,差別僅在「劑量」。 圖/envato.elements

所以世界上並不存在完全無毒的食品,只要過量都可能會導致中毒甚至致死,單純用致癌物、有害物質來區分所有物質其實並不正確,而是要注意它的「劑量」。

當然,加工食品也是同樣的道理。

加工食品吃了不好?也是由劑量決定

常聽大家說,常吃加工食品會對人體有害,對健康造成負擔,但是真的完全都不能吃嗎?

-----廣告,請繼續往下閱讀-----

適量吃加工食品對身體是不會造危害的,大家所認為天然非加工食品吃太多也一樣會出事。如維繫人體生命的必需物質「水」,這個看似無害的物質,喝太多卻會造成水中毒。

或者是「母乳」這個直接來自人體的物質,也都可能含有微量抗生素、重金屬或塑化劑等,因為人體在長久接觸整個大環境中的污染後,多少會有毒素累積,要完全無毒是不可能的 [2]

許多人說加工食品之所以不好,是因為有部分加工食品,如早餐加糖的穀片、汽水、零食餅乾、罐裝高湯或熱狗等,糖份、鹽份和脂肪含量通常很高,也沒有其它營養價值,吃太多確實會對身體帶來負擔。

另一方面,前面提到的肉毒桿菌毒素,現在已廣泛應用於去除皺紋、瘦臉或瘦腿等醫學美容;人人聞之色變的劇毒「砒霜」,還可以應用在急性前骨髓細胞白血病(APL)的治療 [2]

-----廣告,請繼續往下閱讀-----

只要使用正確的「劑量」,毒藥也可以變仙丹。

要如何判別毒性大小?看半數致死劑量

如此重要的劑量該怎麼看呢?在毒理學觀察物質毒性大小時,有一項很常用的工具——半數致死劑量 LD50

不同用量的化學物質,實驗動物死亡率亦各不相同,通常物質的劑量與實驗動物的死亡率呈現正比。而半數致死劑量(lethal dosage 50%, LD50),指的就是在動物實驗中,使實驗動物產生 50% 死亡率所需要的化學物質之劑量,值愈小表示毒性愈強。

如肉毒桿菌毒素 LD50 約為 100 ng/kg(毒素重量/實驗動物重量),小白鼠的體重為 0.02 公斤,所以只需要 2 奈克(10-9 克),就可以使一半的實驗小白鼠死亡;日常生活中的食鹽(氯化鈉) LD50 約為 40 g/kg,需要 0.8 克才能使一半的實驗小白鼠死亡,兩者的毒性可說是天差地遠 [3]

-----廣告,請繼續往下閱讀-----

不過在日常生活中,若要妥善運用食品添加物、農藥等物質,就先得找出不會導致中毒的劑量,也就是「無明顯不良反應劑量(no-observed-adverse-effect-level, NOAEL)」。

它是指在動物實驗中,統計上未觀察到任何不良反應的最大劑量,在後續制定容許量時,NOAEL 是很重要的參考指標 [1]

化學物質的毒性大小,要看它半致死劑量的多寡。 圖/envato.elements

「每日可接受攝取量」v.s.「最大殘留容許量」或「使用限量」

若是要找出「人」即使長期每天攝取,也不會對健康造成危害的量,科學家們會根據動物實驗,計算出「每日可接受攝取量(acceptable daily intake, ADI),這個數值將作為政府單位作為安全評估的界線,於此界線下會再考量到飲食習慣或田間施藥測試結果,訂定更嚴格的使用限量(如:食品添加物)或最大殘留容許量(maximal residue level, MRL)作為行政執法的依據,超標的廠商將受到懲罰。

但是超標並不代表會中毒,使用限量或 MRL 是依據一般飲食習慣設定,每日的「總曝露量」遠低於 ADI,對人體不會有不良影響。使用限量或 MRL 皆是在科學的基礎下所計算出的管制劑量,對於在管理食品添加物或農藥殘留是非常重要的 [1]

-----廣告,請繼續往下閱讀-----

毒物學所熟知的「劑量」,大眾也應瞭解

有了劑量的觀念即可明白,即使不小心喝到一杯某一農藥殘留超標 MRL 5 倍的茶飲料,雖然聽起來很可怕,但其農藥總暴露量可能仍遠低於 ADI,更低於 NOAEL,故不需為此感到恐慌。

當大眾看到不認識的毒物名稱時,很容易被恐懼帶著走。而食品安全無法僅靠科學去維護,也需要消費者、媒體、政府和食品業界一起努力,才能做好安全把關。

購買時,建議詳閱食品標示。 圖/envato.elements

因此我們應該了解到食品安全資訊,是需要培養深入認知與討論議題的能力,才能避免流於情緒的宣洩或受到媒體的操弄。

註解

原文為 “All substances are poisons; there is none which is not a poison. The right dose differentiates the poison from a remedy.” [3]

-----廣告,請繼續往下閱讀-----

參考資料

  1. 陳亭瑋,2022。這是毒還是藥?先搞懂「每日容許攝取量」和「最大殘留安全容許量」吧!。行政院環境保護署毒物及化學物質局。
  2. 李霜茹,2017。怎麼決定多少「劑量」對人體有害?── 「PanSci TALK:食品安全基本功」──「PanSci。食藥好文網 TFDA。
  3. Shibamoto, T. and Bjeldanes, L. F. 2009. Introduction to food toxicology.
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

5
1

文字

分享

0
5
1
別再吃著「熱狗」喊「香腸」,從做法一次看懂到底差在哪?
Evelyn 食品技師_96
・2023/04/11 ・3548字 ・閱讀時間約 7 分鐘

相信許多人童年應該多少都玩過《音速小子》這款 SEGA 經典的電玩遊戲吧?玩家只要一直按著前進鍵,就可以讓音速小子一路無阻地衝到終點,在當時的電玩界,可是帶來了前所未有的速度體驗。

音速小子是一隻擬人的藍色刺蝟,名叫索尼克,擁有超過音速的奔跑速度,最愛吃的食物就是辣味熱狗。去年 11 月 SEGA 為了行銷新遊戲 《索尼克 未知邊境》(Sonic Frontiers)時,還找上經典熱狗堡販賣店「Tulip TimeOut」一起推出合作餐點呢[1]

《索尼克 未知邊境》圖/wikimedia

不過熱狗跟香腸長得這麼像,你知道它們之間的差異嗎?

圖/GIPHY

乳化型西式香腸 VS 顆粒型中式香腸

香腸(sausage)是世界上非常普遍的肉製品,種類繁多,光是不同原料、絞肉的顆粒大小、加工條件、加工溫度、不同腸衣及特殊香料,就可以生產各式各樣之香腸[2]

索尼克愛吃的熱狗(hot dog)即是乳化型西式香腸,源自於德國的法蘭克福香腸(德語:Frankfurter Würstchen),是將畜禽原料肉及其他配料經高轉速之碎肉機,在低溫下細切後形成水、脂肪、蛋白質均質穩定的乳化肉泥,再經加熱後成為具結著性、彈性良好、美味多汁的產品。

-----廣告,請繼續往下閱讀-----

後來傳入美國成為「熱狗」,為了區別,目前只有德國法蘭克福與其周圍地區製作的香腸產品才能在包裝上標示「法蘭克福香腸」販售[3, 4]

而身受國人喜愛的香腸則為顆粒型中式香腸,其在加工過程中所添加之脂肪型態不同於乳化型西式香腸,一般稱之為豬油角,為豬屠體之背脂經冷凍切丁,其與肉漿及配料混合,可增加香腸風味及適口性[2]

另外,中華民國國家標準(CNS)有針對香腸名稱做出明確的定義[5],來看看有哪些市售品符合這些定義吧!

豬中背脂 (A) 及豬油角 (B) 之外觀。圖/參考資料 2

中華民國國家標準(CNS)之香腸名稱定義

  • 生鮮香腸

以畜禽肉為原料,經絞碎,添加調味料、香辛料等,攪拌、混合、充填於腸衣內,未經乾燥所製成之製品,不得添加亞硝酸鹽、硝酸鹽,且必須冷藏、冷凍存放。

-----廣告,請繼續往下閱讀-----

如義美熟香腸未添加亞硝酸鹽,故顏色暗沉,賣相不佳。也因未添加亞硝酸鹽,業者選擇煮熟並冷凍販售,以降低食安風險。

  • 未煮熟香腸

以畜禽肉為原料,經絞碎,添加調味料、香辛料等,攪拌、混合、充填於腸衣內,並經適當乾燥、煙燻或未煙燻所製成之製品,如中式香腸、廣式香腸及義大利香腸等。

為國人消費量相當高的一種香腸,切面可觀察到一顆顆豬油角為其主要特徵。製造時未經加熱煮熟,故販售時是生的,請務必記得要煮熟才能食用喔!

圖/黑橋牌
  • 煮熟香腸

以畜禽肉為原料,經絞碎,添加調味料、香辛料等,攪拌、混合、充填於腸衣內,並經乾燥、煙燻、煮熟所製成之製品,如西式香腸、熱狗、法蘭克福香腸、維也納香腸。

-----廣告,請繼續往下閱讀-----

西式香腸為乳化型香腸,常以法蘭克福香腸(歐洲)及熱狗(美國)為代表。此類香腸有經蒸煮等過程使肉漿形成堅實狀態。

  • 發酵香腸

以畜禽肉為原料,經絞碎,添加調味料、攪拌、混合、 充填於腸衣內,並經發酵、乾燥至一定程度所製成之製品,又可區分為乾式香腸及半乾式香腸。

發酵香腸係利用自然存在於香腸中的乳酸菌發酵,產酸使肉中的蛋白質凝膠而形成堅實的質地、獨特的風味與口感。這類產品不需烹煮,可直接生食[6]

薩拉米香腸(或譯莎樂美香腸)(salami)。圖/Wikipedia/André Karwath aka Aka (CC BY-SA 2.5)

西式香腸加工流程

在瞭解上述的定義之後,兩種香腸在加工流程又是為何?我們先以西式的法蘭克福香腸為例:

-----廣告,請繼續往下閱讀-----
  1. 原料肉處理:瘦肉修整,去筋、腱、脂肪,與肥肉分別在低溫下用絞肉機絞碎備用。
  2. 將攪碎後的瘦肉置於真空細切機,加入鹽及其食品添加物,包含重合磷酸鹽和亞硝酸鹽等,於低溫下攪切成極富黏性的肉漿。
  3. 加入調味料和攪碎的肥肉繼續攪切,使其乳化。
  4. 將乳化完全的肉漿取出,充填至腸衣內,再置入烘箱乾燥、煙燻。
  5. 完成煙燻後將香腸蒸煮,形成堅實狀態的產品。
  6. 再經風乾及冷卻後,便可包裝冷藏或冷凍儲藏販售。

※ 常用的調味料為胡椒、豆蔻、薑、蒜、芫荽粉,辣椒等[7]

日本科學技術有一集拍攝西式香腸的製作流程影片,可點此連結觀看【日本科學技術】香腸的製作流程【中文字幕】

中式香腸加工流程

中式香腸的製程則是:

  1. 原料肉處理 (瘦肉 70%,脂肪 30%):新鮮之前腿或後腿肉去除筋膜、骨及脂肪後絞成絞肉,豬背脂則以切丁機切成丁狀,即豬油角。
  2. 瘦肉先與磷酸鹽、亞硝酸鹽及食鹽充分攪拌後,再與調味料、豬油角混勻並進行醃漬。
  3. 將醃肉以充填機灌入腸衣,每隔 12-15 公分結紮成一節,便可吊掛乾燥於通風處,使香腸呈色並降低水分以利保存。
  4. 冷卻後立即以真空包裝或充氮包裝,冷藏或冷凍保存。

※ 常用的調味料為糖、味精、醬油、白胡椒粉、蒜、肉桂粉、五香粉或酒等[8]

簡而言之,因東西飲食文化差異,演變出不同的香腸製造方式。西式香腸的加工,是使用乳化技術將肉處理成肉漿,蒸煮後,利用煙燻創造風味、上色。

-----廣告,請繼續往下閱讀-----

中式香腸則是偏好以大塊絞肉表現口感,無乳化作用,利用醃製自然入味。不過,現在臺灣消費者所習以為常的香腸,是由黑橋牌創辦人陳文輝先生經過多年所研發出的臺式香腸,口味獨特、偏甜多汁且口感紮實[9]

左為乳化型西式香腸,剛加熱完成折斷時清脆有聲;右為顆粒型中式香腸,切面可觀察到白色至半透明的豬油角。圖/黑橋牌台畜

中西式香腸脂肪含量均高要注意

香腸長久以來受到全世界消費者喜愛,為大眾化、消費量相當高之肉製品。然而不管是中式香腸,還是西式香腸,均含高脂肪含量,且常使用動物性脂肪,導致產品通常含有較高的膽固醇含量與高比例之飽和脂肪酸[2]

因此長期食用過量的香腸,容易對人體心血管產生不良影響,且會提高高血壓、血栓及動脈粥狀硬化等疾病之風險。雖然香腸香噴噴又好吃,但還是要注意不過量,偶爾解饞吃一下就好囉!

參考資料

1. 犬拓,2022。《索尼克 未知邊境》將與熱狗堡販賣店「Tulip TimeOut」推出合作餐點。巴哈姆特。

-----廣告,請繼續往下閱讀-----

2. 李孟儒,2017。利用不同種類植物油製備植物油角取代中式香腸部分豬油角之研究。國立中興大學食品暨應用生物科技學系碩士學位論文。臺中。

3. 維基百科:法蘭克福腸

4. 黑橋牌香腸博物館,2022。【世界香腸圖鑑】―法蘭克福香腸Frankfurter Würstchen。Facebook。

5. 胡祐誠,2020。以芹菜萃取物取代香腸中亞硝酸鹽之研究。國立屏東科技大學食品科學系碩士學位論文。屏東。

-----廣告,請繼續往下閱讀-----

6. 凃榮珍,2016。酸酸的香腸?一窺即食香腸的發酵世界。科技大觀園。

7. 吳祥雲,2010。西式乳化型香腸。農業主題館 畜產加工。

8. 凃榮珍,2010。中式香腸的製作。農業主題館 畜產加工。

9. 用好心腸做好美味香腸團隊,2014。香腸旅行。香腸博物館。

Evelyn 食品技師_96
23 篇文章 ・ 28 位粉絲
一名食品技師兼食品生技研發工程師,個性鬼靈精怪,對嗅覺與味覺特別敏銳,經訓練後居然成為專業品評員(專業吃貨)?!因為對食品科學充滿熱忱,希望能貢獻微薄之力寫些文章,傳達食品科學的正確知識給大家!商業合作請洽:10632015@email.ntou.edu.tw