0

2
0

文字

分享

0
2
0

高能物理學之福爾摩斯探案,發現新粒子!--《科學月刊》

科學月刊_96
・2015/11/12 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

蔣正偉/美國卡內基美隆大學物理博士,現任國立中央大學特聘教授、中央研究院合聘研究員、國家理論科學中心科學家。

歐洲核子研究組織(CERN)的大型強子對撞機(Large Hadron Collider, LHC),在2013年的夏天,發現了一個新粒子的存在。接著的實驗陸續檢查這個新粒子所參與的各種反應, 證實它極其符合粒子物理的標準模型中希格斯粒子的特性。這項發現的重要性在於完備了標準模型中的所有基本粒子,讓我們確信自然界對稱性的破壞、基本粒子質量的來源,的確都跟希格斯粒子密切相關。加上它對數不清的基本粒子實驗成功而精確的預測或解釋,標準模型也被正名為「標準理論」。

Standard_Model_of_Elementary_Particles.svg
2013年夏天,CERN終於確定他們在LHC對撞中發現的「新粒子」,就是「希格斯波色子」(圖片右邊黃色的粒子),此發現完備了「基本模型」,並將其正名為「基本理論」。但是,這真的是「最基本」嗎? Source: wiki

宇宙的終極理論

然而,粒子物理學接下來的一個重要問題是:「這個標準理論就是自然界的終極理論嗎?」有很多理論上的推敲,以及實驗上暗物質、暗能量和微中子質量的發現,告訴我們問題的答案是否定的。我們需要超越標準理論的新物理來幫助解釋暗物質、暗能量的存在,微中子質量的來源,以及許多宇宙觀測、演化的現象。所以,未來粒子物理學的挑戰是:新物理在哪裡?我們該如何去發現與檢驗?宇宙的終極理論究竟是什麼?

因為標準理論的基本粒子已經都在實驗中被發現,所以新物理將會聚焦於尋找其他新粒子,這也同時是高能實驗物理學一直以來積極進行的方向。如果我們可以具體預測某個新粒子的質量以及交互作用的種類與強度,那麼對撞機就有明確的搜尋目標與方法,或者增加對撞能量、提高對撞機率,又或者改進偵測器的靈敏度等。可惜的是,我們現在擁有各種理論模型,卻沒有百分之百的信心哪一個是對的。在這種缺乏線索的情況下,粒子物理學的進展往往需要一些運氣。

-----廣告,請繼續往下閱讀-----

2046228644_daab5255bd_o

發現新的共振態

今年六月,LHC 的實驗公佈了一項結果,從某些粒子的衰變模式中,發現在2 TeV(兆電子伏特)能量附近似乎存在一個新的共振態(物理學家用共振態泛指在實驗中之某個物理態,其質量恰等於對撞的能量,以致於大量的生成。在能量頻譜曲線上,這種共振態的明顯特徵就是峰值的出現)之所以說「似乎」,是因為目前的統計量不足,所得信號僅偏離背景3個標準差左右,信心度並不夠高。根據粒子物理的標準,信號必須要偏離背景 5個標準差以上,才夠資格稱作發現。按照愛因斯坦的質能互換,這個共振態具有相當於約2100個質子的質量。想當然爾,粒子物理學家對於這個新發現非常興奮,並且寄予厚望。因為一旦確定,僅僅這樣一個新的共振態就會提供許多新物理的資訊,引領我們跨進粒子物理的嶄新世紀。

Standard_deviation_diagram.svg
標準差(σ,為Σ的小寫),可以理解為「樣本偏離常態(均值)的多寡」。在樣本數趨近無窮的情況下,樣本偏離1.96個標準差表示「此現象有5%的機會由非實驗操弄所引起」,而3.89個標準差有0.01%的機會,這對社會科學(心理學之類)來說,已是相當顯著。文中提及的5個標準差,大約只有0.000057%的機會。圖為常態分部圖。 Source: wiki

除了上述的質量以外,從實驗的論文當中,我們還得知下列訊息。在過去8 TeV的LHC實驗中,約產生了數十個這樣的共振態,我們因此知道它的產生機率(或稱產生截面積)。從衰變模式看來,它應該是個玻色子(自旋角動量為整數的粒子),而且與電弱規範玻色子交互作用。從能量頻譜分析,知道它的總衰變強度應該小於100 GeV(十億電子伏特),算是個窄頻寬的共振態。另一方面,利用其他衰變模式來搜尋新粒子的實驗也告訴我們,這個共振態並不喜歡衰變到某些最終狀態,或稱末態(例如輕子末態),因而存在著一些限制。

追尋可能的線索

從這些有限的已知資訊中,國際上許多理論學家已經展開各種邏輯上可能性的討論,試圖將所有線索拼湊起來,提供一個合理、完整的圖像。在短短的兩個月內,已經有超過40篇的理論論文提出解釋,當中也有臺灣的貢獻。一開始,絕大多數的人很自然地想到,這個共振態可能是自旋為1的規範粒子(統稱帶電荷的W’或不帶電荷的Z’玻色子),其中包括國內張敬民、阮自強教授的工作。如果真是如此,這意味著自然界至少還存在另一種新的交互作用力,也許可以增加我們對大統一理論的了解。還有一種可能是,它是自旋為0的另一個希格斯粒子;國內陳泉宏教授即有一篇論文討論。如果是這種情況,就表示自然界存在不止一種希格斯粒子,這對宇宙早期的創生或許有重要的影響,對基本粒子質量的來源也會有不同的理解。

另一個有趣的可能性是,此共振態並不是一個基本粒子,而是由其他新粒子透過新的強交互作用所構成的合成粒子,這是為什麼大家保守地稱它為共振態的原因。這陣子在日本東京大學的訪問期間,我因緣際會與當地的物理學家共同合作,率先提出這種可能性以及建立一個具體的模型。在此架構中,我們猜想自然界在更高能量的尺度下,還有一群新的、更重的基本粒子,像是我們所熟悉的夸克,會互相凝聚、形成一系列合成粒子,並透過特定的媒介子與標準理論的基本粒子相互作用,而其中最輕的合成粒子可以成為宇宙中的暗物質。

-----廣告,請繼續往下閱讀-----

如前面提到的,現在實驗的統計量還太低,LHC的超環面儀器(ATLAS)和緊湊渺子線圈(CMS)實驗組看到的共振態質量也不盡然吻合(分別為2 TeV和1.8 TeV),而且某些該發生的衰變也還未觀測到,所以現在看到的信號很可能又只是統計上的隨機漲落,讓人空歡喜一場。不過,大家都還是抱著很大的期待,特別是理論物理學家,希望透過它來嘗試新模型的建構,更盼望在LHC最近恢復更高能量運轉的短時間之內,可以確定它的存在,進而引導粒子物理邁向新的方向。

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
實驗發現了五夸克粒子,真的嗎?
天上掉下來的粒子—從包利到希格斯

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3520 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

11
4

文字

分享

1
11
4
希格斯玻色子發現十週年
PanSci_96
・2023/03/27 ・7603字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

作者︱黎偉健

2012 年 7 月 4 日,位於歐洲核子研究中心(CERN)的大型強子對撞機(Large Hadron  Collider(LHC))的 ATLAS 和 CMS 實驗團隊宣佈了希格斯玻色子的發現,轟動了整個物理學界。提出希格斯玻色子的希格斯(P. Higgs)、恩格勒(F. Englert)和布勞特(R. Brout)迅速在翌年獲頒諾貝爾物理學獎。

在粒子物理的標準模型裡,希格斯玻色子關係到基本粒子質量的來源,具有重大意義。此外,由於希格斯玻色子很可能與一些未知的物理有關,以後對該粒子的進一步研究很可能有助解開現今物理學的一些謎團。藉著希格斯玻色子發現十週年,讓我們回顧一下希格斯玻色子的研究在過去十年的進展,並前瞻未來對它的更深入探測與其蘊含的意義。

粒子物理標準模型

現代物理學的一項輝煌成就,是認識到物質皆由基本粒子(elementary particle)組成,而一切已知的物理現象可歸結為基本粒子之間基本交互作用(fundamental interaction)的結果。例如水,它由水分子組成,而水分子由氫原子和氧原子組成;原子則由電子和原子核組成,而原子核由質子和中子組成;質子和中子則由夸克組成。

從此可見,電子和夸克組成了我們日常接觸到的所有物質。它們是「基本」粒子,因為至今物理學家並未發現到它們有內在結構。基於夸克之間存在強交互作用,夸克能組成質子和中子,質子和中子能組成原子核;基於電子和夸克之間存在電磁交互作用,電子和原子核能組成原子,原子能組成分子。

-----廣告,請繼續往下閱讀-----

基本交互作用有四種:重力交互作用(gravitational interaction)、電磁交互作用(electromagnetic  interaction)、強交互作用(strong interaction)和弱交互作用(weak interaction)。重力交互作用即萬有引力,它主宰著如星體的形成及運行等天文尺度的物理現象,由廣義相對論描述【註 1】;電磁交互作用、強交互作用和弱交互作用主宰著微觀世界的物理現象,由粒子物理的標準模型(Standard Model)描述。

圖一:標準模型中的基本粒子。

圖一列出了標準模型中的基本粒子,它們分為三類:費米子(fermion)、規範玻色子(gauge boson)和希格斯玻色子(Higgs boson)。費米子分為兩種:夸克(quark)和輕子(lepton),有三個世代(圖一中左邊的首三列)。第一世代的費米子為最常見,上夸克、下夸克和電子組成了原子,從而組成了我們日常接觸到的物質。規範玻色子是傳遞基本交互作用的粒子,其中光子傳遞電磁交互作用,W Z 玻色子傳遞弱交互作用,膠子傳遞強交互作用。希格斯玻色子是希格斯場(Higgs field)的激發。希格斯場與其他粒子的交互作用使得這些粒子具有質量,而希格斯玻色子會與帶有質量的基本粒子發生直接交互作用。

圖二:基本粒子的交互作用。

圖二顯示了標準模型中基本粒子的直接交互作用情況,其中藍線兩端的粒子會發生直接交互作用。例如光子(γ)和電子(e),它們之間有一藍線連接,即具有直接交互作用。粒子之間的交互作用可以形像地用費曼圖(Feynman diagram)表示。例如電子和電子之間的靜電排斥現象,可看作散射過程 eeee,其費曼圖如圖三,其中縱向代表空間,横向代表時間,時間流逝方向從左到右,左端為初態,右端為終態,實綫代表電子,波浪綫代表光子,而綫的交點(稱為頂點(vertex),圖中有兩個)代表電子和光子之間的直接交互作用。直接交互作用顯示為一頂點,即交互作用發生在某時空點上。

圖三:以費曼圖表示電子之間的靜電排斥現象。

根據圖三的圖像,我們可以把電子和電子之間的遙距靜電排斥現象理解為一顆電子釋放出一顆光子,然後該顆光子被另一顆電子吸收,從中光子把能量和動量從一顆電子攜帶到另一顆電子,因此我們說光子傳遞電磁交互作用;這好比兩個籃球員在傳球,籃球員是電子,籃球是光子,而籃球員在拋球和接球時之所以感受到對籃球施了力,正是因為籃球傳遞了動量。

-----廣告,請繼續往下閱讀-----

從這角度看,世上並沒有遙距的力,一切基本交互作用都發生在某時空點上,即費曼圖中的頂點。這種交互作用的局域性(locality)是現代粒子物理學的特點,它是狹義相對論和量子力學結合——量子場論——的結果。類似地,圖二中的每條藍線都有對應的費曼圖頂點。

希格斯場與希格斯玻色子

根據量子場論,粒子是場的激發。這就是為什麼每顆電子都相同,因為它們都是同一個場——電子場——的激發。在量子場論中,真空被定義為能量最低的態。對於一般的場,它的值在真空中為零。例如,由於電磁場由光子組成,帶正能量,因此電磁場非零的態能量必定比電磁場為零的態高,所以真空中電磁場必為零。希格斯場則不同,它在真空中的值由一個勢能函數取極小值決定,該勢能函數對希格斯場 ϕ 的依賴形式如圖四中的紅線。

圖四:勢能函數 V(ϕ)對希格斯場 ϕ 的依賴形式,黑色粗體的區段是我們目前能觀測到的,紅線為標準模型的預言,藍線是某個其他模型的預言。(本圖出自參考文獻1)

從圖四可見,勢能在希格斯場為一非零值時取最小值,即希格斯場的真空期望值(vacuum expectation value(vev))為非零【註 2】。也就是說,真空中充滿著希格斯場,而任何粒子在任何地方任何時間原則上都有可能與其發生交互作用。

在標準模型裡,只有特定幾種粒子能與希格斯場發生交互作用。這些粒子包括夸克、帶電輕子(e, μ,τ)以及 W Z 玻色子。這些粒子因為與真空中的希格斯場發生交互作用,從而獲得質量。對於這些粒子,它們與希格斯場的耦合強度與它們自身的質量成正比。所謂的希格斯玻色子,其實就是希格斯場在其真空值背景上的激發。

-----廣告,請繼續往下閱讀-----

因此,只有帶質量的粒子才能與希格斯玻色子發生直接交互作用(如圖二中與希格斯玻色子有藍線連結的粒子),而這些粒子與希格斯玻色子的耦合強度也正比於他們自身的質量【註 3】。值得注意的是,希格斯玻色子能與自身發生直接交互作用(見圖二)。

基本粒子的質量直接影響著宇宙中物質存在的形式。例如,我們知道,上夸克比下夸克輕,而質子由兩顆上夸克和一顆下夸克組成,中子則由一顆上夸克和兩顆下夸克組成【註 4】,因此質子比中子輕,從而質子是穩定粒子,這使得氫原子的組成變成可能。如果下夸克比上夸克輕,那麼質子會衰變成中子,即氫原子不穩定,宇宙便不可以如已知的含大量氫。又例如,原子的大小與電子的質量成反比,而原子的能階與電子的質量成正比,因此電子的質量直接影響著物質的化學特性。再例如,太陽中心核反應的其中一環取決於弱交互作用,其發生的機率正比於 1/mw4,其中 mwW 玻色子的質量。可見,希格斯場作為基本粒子質量之源,對物質的存在形式扮演著決定性角色。 

希格斯玻色子於 2012 年在位於歐洲核子研究中心(CERN)的大型強子對撞機(LHC)中被發現,是標準模型中最後一顆被發現的基本粒子。

對希格斯玻色子的最新認識

我們對希格斯玻色子的認識源自大型強子對撞機(LHC)的實驗數據。在 LHC 中,兩束質子互相對撞,質子裡的夸克或膠子會發生散射,有可能從中產生希格斯玻色子。由於希格斯坡色子的壽命很短,只有约 10  -22 s 秒,被產生的希格斯玻色子在到達粒子探測器前已衰變成較穩定的粒子。

-----廣告,請繼續往下閱讀-----
圖五 a:LHC 中產生希格斯玻色子的典型過程費曼圖 (本圖出自參考文獻1)

圖五 a 顯示了一個 LHC 中產生希格斯玻色子的典型過程的費曼圖。該過程的初態是兩顆來自質子的膠子(gluon),這兩顆膠子互相碰撞,產生了一對正反頂夸克,而由於頂夸克質量很大,從而與希格斯玻色子的耦合也很大,因而很有可能產生一顆希格斯玻色子,而該顆希格斯玻色子稍後衰變成兩顆 Z 玻色子,而這兩顆 Z 玻色子又各自衰變成一對正反帶電輕子(e+eμ+μ),粒子探測器會探測到終態的四顆帶電輕子。

圖五 b:實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。(本圖出自參考文獻1)

圖五 b 顯示了實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。藍色的部分顯示了非希格斯玻色子產生過程的供獻,而紅色部分即為產生希格斯玻色子所致,其峰位於希格斯玻色子的質量(125 GeV)。 

當然,在 LHC 中,希格斯玻色子的產生和衰變不是只有如圖五 a 的過程,所有可能的產生和衰變過程的費曼圖如圖六。

圖六:希格斯玻色子在LHC實驗中的產生和衰變過程。 (本圖出自參考文獻 3)

在圖六中,(a)至(f)是產生一顆希格斯玻色子的過程,(g)至(j)是希格斯玻色子的衰變模式,(k)至 (o)是產生兩顆希格斯玻色子的過程。在這些圖中,粒子的記號如圖一,而 q 代表夸克,V 代表 W 或 Z,f 則代表質量非零的費米子,粒子 X 與希格斯玻色子的歸一化耦合強度記為 κX【註 5】(標準模型對應 κ=1)。值得注意的是,希格斯玻色子可以透過因量子漲落而產生的粒子迴圈與質量為零的膠子和光子發生間接交互作用(見圖六(a)、(i)和 (j))。產生過程(a)至(d)以及衰變過程(g)至(j)都已被實驗證實。我們可以從這些眾多的過程所獲得的數據推斷出粒子與希格斯玻色子的歸一化耦合強度 κ

-----廣告,請繼續往下閱讀-----
圖七 a:從實驗數據中得到的 κ 值,紅色直線代表標準模型的預測值。(本圖出自參考文獻2)

圖七 a 中的點顯示了從實驗數據中抽取出來的 κ 的值,紅色直線則表示了標準模型的預測。從圖可見,對於 W 玻色子、Z 玻色子、頂夸克(t)、底夸克 (b)和濤子(τ),它們與希格斯玻色子的耦合強度已被精確量度,並且其值與標準模型預測一致。 

圖七 b:κf和 κV的量度精確度,中間黃色菱形為標準模型的預測值,越靠近黃色菱形表示實驗數據越符合理論值。(本圖出自參考文獻3)

圖七 b 顯示了 κfκV 的量度精確度在過去十年內的改善。紅色的圈表示 2012 年剛發現希格斯玻色子時的數據,藍色表示至 2015 年的數據,而黑色表示至 2018 年的數據。從圖可見,耦合強度的精確度在過往十年被大幅改善,並且其值與標準模型預測(κ=1)一致。 

未來對希格斯玻色子的探測 

圖八:基本粒子與希格斯玻色子的耦合强度量度進度及未來展望。(本圖出自參考文獻1)

圖八總結了至今對不同基本粒子與希格斯玻色子的耦合強度的量度進度以及未來展望。正如以上所述,我們已確定 WZ 玻色子,以及第三世代費米子與希格斯玻色子的耦合強度與標準模型一致。對於第二世代費米子,由於它們比第三世代費米子輕很多,因此與希格斯玻色子的耦合強度也小很多,所需的數據也多很多。

對於緲子,我們預計在未來五至十年間能確定它與希格斯玻色子的耦合強度是否與標準模型一致。在將來 15 至 20 年間,在升級後的高亮度 LHC(HL-LHC)中,圖六中未被觀察到的過程都會被觀察到,如同時兩顆希格斯玻色子的產生。可是,這都不足以測量出希格斯玻色子的自耦合強度。要量度魅夸克與希格斯玻色子的耦合強度,或希格斯玻色子的自耦合強度,我們需要 LHC 以外的新一代對撞機。

-----廣告,請繼續往下閱讀-----

對於奇夸克和第一世代夸克,由於它們非常輕,現時並沒有確切方法探測它們與希格斯玻色子的耦合強度。未來的正反電子對撞機或有機會探測到電子和奇夸克與希格斯玻色子的耦合強度。對於上夸克和下夸克,我們可能需要對撞機以外的方法,如對原子物理的精確量度,但這都只處於討論階段。 

有助解開的物理學謎團

我們對希格斯玻色子的進一步認識很可能有助解開一些現今粒子物理學和宇宙學的謎團,這些未解問題可大概歸為以下五個主要問題:

1. 層級問題

在標準模型裡,弱交互作用比重力交互作用強 1032 倍。為何重力這麼弱?這問題稱為層級問題(hierarchy  problem)【註 6】。基於重力如此弱的事實,可以在理論上證明,如果在弱電尺度(~200 GeV)附近沒有標準模型以外的新物理的話,在未知的終極理論裡的基本參數須被準確微調至 32 個小數位。很多物理學家把這種基本參數的精確微調視為不自然,從而推斷在弱電尺度附近必定有新物理。

因此,林林總總的新物理理論被提出,如一派理論提出希格斯玻色子並非基本粒子,而是由更基本的粒子組成的複合粒子;另一派理論提出在高能量尺度下存在超對稱【註 7】;還有一派理論提出宇宙存在額外維度。希格斯玻色子的發現以及至今對它特性的量度,排除了很大部分這些新物理理論。現今的理論家提出新理論時需要更謹慎,使得新理論與有關於希格斯玻色子的實驗數據吻合。

-----廣告,請繼續往下閱讀-----

2. 正反物質不對稱

在我們身處的宇宙中,物質都由正物質組成。可是,根據量子場論,一切粒子皆有其對應的反粒子【註 8】,而反粒子可組成反物質。那麼,為什麼宇宙中的物質只有正物質,沒有反物質呢?從理論推斷所知,在宇宙初期的高溫情況下,正反物質數量大致相同。現在我們所見到的正物質,是在宇宙因膨脹而冷卻後,正反物質互相湮滅後剩餘的。也就是說,宇宙很早期的時候正反物質數量存在些微不對稱,導致現今宇宙中只有正物質。

正反物質不對稱的大小依賴於宇宙早期弱電相變的細節。相變現象在日常隨處可見,如水蒸氣遇冷時凝結成液態水,或天然磁鐵遇熱時喪失磁性。在宇宙初期,溫度極高,希格斯場得到連續激烈的激發,因而其值不會停留在勢能(圖四)的最低點,而是作大幅度擺動,導致其平均值(即統計期望值)為零。隨著宇宙膨脹,溫度下降,希格斯場的擺動減小,直到某臨界溫度以下時,希格斯場的期望值取勢能的最小值處。希格斯場的期望值從零變為非零,這是一個相變過程,稱為弱電相變(electroweak phase transition)。

在標準模型裡,希格斯勢能導致的弱電相變為一連續相變(即所謂的二階相變),其結果是所造成的正反物質數量不對稱太小,不足以解釋所觀察到的不對稱值。因此,物理學家提出了一些新理論,這些理論涉及到新粒子的引入,而這些新引入的粒子會與希格斯場發生交互作用,從而改變希格斯場的勢能形式(如圖四中的藍線),使弱電相變變得不連續(一階相變),這也順帶的改變了希格斯玻色子的自耦合強度。所以,未來實驗對希格斯玻色子的自耦合強度的量度將有助解開正反物質不對稱之謎。

3. 暗物質

我們從天文觀察中得知,宇宙中存在著大量暗物質,其總質量約為普通物質的五倍。可以肯定,暗物質並非由標準模型粒子組成。因此,很多新的粒子理論被提出,當中引入了新的粒子。一個很自然的問題是,既然希格斯場負責給予標準模型粒子質量,它會不會也負責給予暗物質粒子質量呢?如果真的是這樣,那麼這些新的粒子會以量子迴圈的方式改變希格斯玻色子的壽命和自耦合強度,或者希格斯玻色子會衰變成這些新粒子,而這些都有機會在未來被測量到。

4. 費米子質量問題

在標準模型裡,費米子分為三個世代,三個世代的質量截然不同:第二世代比第一世代重,而第三世代比第二世代重(見圖一)。標準模型並不能對此作解釋。為此,物理學家提出一些新理論,而在這些新理論中希格斯玻色子具有一些標準模型不允許的衰變模式,如 Hμ+τ。如果這些新的希格斯玻色子衰變模式存在的話,有可能在未來被實驗探測到。

此外,在標準模型裡,微中子沒有質量。可是,我們從近年的微中子振蕩實驗中得知,微中子具有微小質量。希格斯場有可能在賦予微中子質量上扮演重要各式。

5. 宇宙暴脹之源

我知道,希格斯場的真空期望值取決於它的勢能形式,這是希格斯場與其他場截然不同的特點。有趣的是,根據現時所知的希格斯玻色子質量,我們可以推斷現今的希格斯場真空期望值只是勢能的局部最小值(又稱為錯真空(false vacuum)),而不是全局最小值(即真真空(true vacuum))。也就是說,我們所處於的真空並非最低能量態,而且不穩定,有機會衰變成更低能的最低能量態。

可是,這個錯真空衰變的機率極小,導致錯真空的壽命遠長於宇宙年齡,即我們所在的真空處於一種亞穩定狀態。我們知道,在宇宙的極早期曾經發生過暴脹,即宇宙以指數式急速膨脹,而這導致了現今宇宙在大尺度下的平均性。我們很自然會問,是甚麼導致暴脹呢?理論上,類似於希格斯場的錯真空衰變現象很可能就是暴脹的原因。究竟希格斯場與宇宙早期的暴脹有關嗎?物理學家對此仍未有答案。

結語

希格斯玻色子的發現為粒子物理學研究展開了新一頁。在希格斯玻色子被發現後的十年裡,透過在對撞機實驗中對它的深入探測,我們對希格斯場和希格斯玻色子有了更豐富的認識。至今,一切有關希格斯玻色子的量度均與標準模型預測一致。我們可以肯定的說,正如標準模型所述,希格斯場的確賦予質量給W、Z玻色子以及第三世代費米子。這證明宇宙中存在第五種基本交互作用——希格斯交互作用。在未來的實驗裡,對希格斯玻色子的進一步探測將有助解開一些未解決的物理學謎團。

註釋

  1. 對於基本粒子,電磁交互作用的強度約為重力交互作用的 1030 至 1043 倍。因此,在粒子物理裡,重力交互作用可以完全被忽略。
  2. 希格斯場能具有非零真空期望值,關鍵在於它的自旋為零,從而非零真空期望值不會與勞侖茲不變性抵觸。希格斯場取非零真空期望值,是一種自發規範對稱破缺,這使得 W Z 既是傳遞交互作用的粒子,又帶有質量。這種賦予規範玻色子質量的機制稱為希格斯機制(Higgs mechanism),是弱電理論能成為一自恰理論的關鍵。
  3. 事實上,我們可以把希格斯玻色子與其他粒子的直接交互作用視為第五種基本交互作用,稱為希格斯交互作用,或湯川交互作用(Yukawa interaction)。
  4. 注意,質子和中子內除了夸克還有大量膠子,而質子和中子的質量絕大部分源於這些膠子的交互作用能,但這部分的貢獻在質子和中子裡是幾乎相等的。
  5. 歸一化耦合強度 κ 定義為耦合強度除以標準模型的耦合強度。因此,對於標準模型,歸一化耦合強度為 1。
  6. 關於層級問題是否一個合理的物理學問題,學術界仍存在爭論。
  7. 超對稱是一種理論上可能存在的時空對稱和內在對稱的混合,至今未被實驗發現。
  8. 反粒子與其對應的正粒子有相同質量和自旋,但帶相反的荷,如電荷。

參考文獻

  1. G. P. Salam, L. T. Wang, and G. Zanderighi, Nature 607 (2022) 7917, 41-47
  2. ATLAS Collaboration, Nature 607 (2022) 7917, 52-59 
  3. CMS Collaboration, Nature 607 (2022) 7917, 60-68
所有討論 1
PanSci_96
1220 篇文章 ・ 2223 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

-----廣告,請繼續往下閱讀-----
  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

-----廣告,請繼續往下閱讀-----

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

-----廣告,請繼續往下閱讀-----
對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。