0

4
0

文字

分享

0
4
0

2021 諾貝爾物理學獎:極度燒腦的「氣候模型」及「複雜物理系統」ft.許晃雄老師、林秀豪老師【科科聊聊 EP63】

PanSci_96
・2021/11/02 ・3801字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

諾貝爾物理學獎這次由真鍋淑郎(Syukuro Manabe)、哈斯曼(Klaus Hasselmann)、帕里西(Giorgio Parisi)三位科學家拿下。本屆物理學獎的核心概念「複雜物理系統」,背後還證實了氣候變遷的意義,也鼓勵年輕學者放膽去做氣象學研究!

Nobel_2021_physic

得獎者帕里西用統計力學中的「副本方法(Replica method)」破解出複雜材料中的規律,進而了解「複雜系統」。而同樣為「複雜系統」的氣候,則由真鍋和哈斯曼教授各自開創出的氣候模型,讓我們從中「了解地球氣候」和知道「地球氣候如何被人類影響」。

泛泛泛科學邀請投身在氣象學和物理學多年的許晃雄老師和林秀豪老師,除了解釋三位得獎者的研究、「複雜系統」和「混沌」的定義與差異,更是說出了他們在做跨領域研究時遇到的困難、分享他們對跨領域的想法!

本次專訪感謝 台灣科技媒體中心 的協助。

-----廣告,請繼續往下閱讀-----
  • 01:42 真鍋淑郎、哈斯曼、帕里西研究簡介

本屆諾貝爾物理學獎得獎者分別是真鍋淑郎(Syukuro Manabe)、哈斯曼(Klaus Hasselmann)、帕里西(Giorgio Parisi)。

真鍋和哈斯曼都是氣候科學家,他們創造了氣候模型來模擬全球暖化。透過真鍋淑郎的模型,讓我們可以了解全球溫度升高,和大氣中的二氧化碳的含量有關;從哈斯曼創建的模型則證實了二氧化碳,都是源自於人類活動,因此了解人類是如何影響氣候和複雜的地球系統。帕里西則是研究「複雜系統」的物理學家,他從無序的複雜材料中,發現了複雜系統中隱藏的模式,而這個理論後續也被許多的科學領域所應用。

延伸閱讀:
The Nobel Prize in Physics 2021
【2021諾貝爾物理學獎】如何觀測地球暖化?有「氣候模型」及「複雜物理系統」就搞定!
2021諾貝爾物理獎記者會會後新聞稿
2021諾貝爾物理獎官方新聞稿全文翻譯

  • 02:36 什麼是「複雜系統」?

複雜系統是「隨機、無序、難以理解」的系統,在自然界中最常被提及的複雜系統即為「椋鳥群飛」。「椋鳥群飛」是指雖然每一隻鳥的飛行路徑都無法預測,甚至會隨時調整,但當尺度放大到一整群後,卻變成可以預測。

自然界中到處都可見許多複雜系統,若要以我們的生活來舉例,這個社會也可以算是一個複雜系統。

-----廣告,請繼續往下閱讀-----
  • 05:24 地球科學領域也有很多複雜系統的現象

地球科學領域中也有許多複雜系統,例如波浪原本是雜亂,但逐漸匯集變湧浪;或是海面上的小對流原本是雜亂的,但在匯集後則成為颱風。

天氣是一個雜亂的現象,想要預測非常困難,但若將「天氣」視為「天候」來看時,我們就能找出背後的系統,因此氣候變遷也算是一種複雜系統的現象。

  • 07:06 真鍋創造簡單的氣候模型,計算結果近乎超級電腦

真鍋淑郎是第一個地表模型開發者,而他所發展的模型,也讓大眾了解大氣中增加的二氧化碳含量,是如何讓地球表面溫度增高。

在 1960 年代,真鍋淑郎提出的氣候模型在考量溫室氣體時,他發現二氧化碳濃度變兩倍時,會讓地球溫度上升兩度,因此他的模型證實了全球溫度的升高,是和大氣中二氧化碳的含量有關。

-----廣告,請繼續往下閱讀-----

真鍋淑郎所研究出的模型,除了可以去了解古氣候,也能去推測未來氣候,而這些結果和超級電腦所運算的結果是很接近的。真鍋淑郎的模型,提供屬於複雜系統的「氣候」一個可以模擬的系統,這個重要貢獻後來還供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

延伸閱讀:2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文【2021諾貝爾物理獎】複雜系統

  • 18:00 真鍋的氣候模型無法模擬極端氣候

雖然說真鍋淑郎的模型能夠預測氣候,但是對於極端氣候或是尺度小的氣候,如:午後雷陣雨,則還無法做到。

  • 19:13 哈斯曼證明「氣候模型」可靠性、人類是加劇溫室效應的兇手

哈斯曼提出了一個把天氣和氣候連結在一起的模型。他以「隨機氣候模式」證實了天氣雖然混亂多變,但若把尺度拉大來看天氣現象,就能預測出氣候。他所提出的模型同時也解釋「氣候模型」在預測氣象上,仍是可靠的預測方式。

此外,哈斯曼還開發出可以辨識自然現象,或是人類活動時,在氣候中留下的痕跡。這個「指紋偵測模式」也證實了造成大氣中的溫度升高,並加劇溫室效應的源頭,都是來自於人類的活動。

-----廣告,請繼續往下閱讀-----

延伸閱讀:氣候變遷議題躍上檯面、理解物理無序系統,2021 諾貝爾物理學獎得主出爐

  • 23:29 尺度對了,「複雜系統」就看得出來了!

當觀察的尺度過小時,就會不容易看出各種事物中的秩序或趨勢。但若把觀察的時間或模式尺度放大來看,就能找出規律。如同「椋鳥群飛」中單看一隻「鳥」會不容易看出規律,但把尺度放大到「鳥群」,則可以看出彼此間的交互作用,進而做出預測。

  • 28:12 帕里西找出複雜材料中的規律

要計算複雜系統是非常困難的一件事。有一種類似玻璃結構的複雜材料「自旋玻璃(spin glass)」,它是一種在非磁性金屬中摻入少量磁性金屬的合金的物質。但因為這些金屬排列方式隨機混亂,所以基本上無法預測。

但帕里西卻將要計算複雜系統時,需要使用的對數函數平均值,以副本對稱(replica symmetric)的概念映射到多項式平均值,最後成功解出了自旋玻璃的規律。帕里西的貢獻就是提供一個理論讓科學家能在複雜系統中找到規律,甚至有機會提出預測長期無序行為的方法,也能將這個理論運用在地球氣候變遷預測上。

  • 31:08 本屆物理獎背後意義:氣候變遷是科學嚴謹地觀測分析結果

本屆物理獎的各個獲獎成就,皆是圍繞在「複雜系統」,讓我們能更了解這個系統的特性和演化。同時,諾貝爾物理獎會頒發給氣象學家,表示溫室效應的加劇也終於被全世界意識到。

-----廣告,請繼續往下閱讀-----

諾貝爾物理學委員會主席 Thors Hans Hansson 表示,今年的物理獎也顯示出了我們對地球氣候變遷的理解,都是透過科學嚴格地觀測分析。而這些科學家研究了複雜系統中的長期效應,也讓未來能開創新的研究領域。

  • 34:40 氣象學被物理學界肯定,可以鼓舞更多年輕學者

過去關於氣象學的研究,多半是不會受到諾貝爾獎的肯定。但透過這次的獲獎,表示氣象學也逐漸被物理學界看到,對於鼓勵年輕學者投入這個領域中,是很大的助力。

  • 37:10 諾貝爾獎的肯定是幫重要氣候現象做背書

1995 年諾貝爾化學獎得主 Sherwood Rowland 以發現氟氯碳化合物會對地球臭氧層破壞而得獎。也因為受到諾貝爾獎的肯定,後續相關政策和研究的推動,都能獲得更好的資源。

本屆諾貝爾物理獎也強調氣候變遷的問題,表示全球暖化的問題受到認同,才會向對此有貢獻的科學家致意,並希望能透過研究的獲獎,為這些現象背書,不讓這些議題繼續被泛政治化。

-----廣告,請繼續往下閱讀-----

延伸閱讀:諾貝爾化學獎得主羅蘭德與臭氧層破洞

  • 39:02 有想做跟想解決的事,就放膽去跨領域

現今在美國與臺灣,學生們都是因為有想做跟想解決的問題,所以才會選擇自己想就讀的科系。

現在的研究與其去明確切分自己的領域,不如運用上自己所學,放膽去做研究自己想研究的現象。

  • 45:50 想在臺灣跨領域該怎麼辦?

「跨領域參與」是未來很重要的方向,但目前臺灣的學術界仍是較傳統分界狀態,學者如果想要跨領域,通常還是跟隨有經驗的研究者入門,才會比較容易。

雖然跨領域是未來趨勢,但並非每個人都該往跨領域前進。如果說能夠讓學生在專業領域基礎紮穩,但是目光能放到更遠處,對於跨領域不會有排斥感,這樣就能多少替學生開啟跨領域的一扇門。

-----廣告,請繼續往下閱讀-----
  • 55:13 不用為了跨領域而跨領域,了解自己的想法最重要

學生除了把主領域知識做好,也應該要帶給他們跨領域的想法。但現在臺灣的教育行政體系仍很難做到,也是因為沒有太多的師資資源。

不過有時也能以合作方式去合作,不用強求每個人都具有跨領域的能力,了解自己最想做的事情才是最重要的。

  • 01:01:20「複雜系統」和「混沌」完全不一樣

「複雜系統」就是因為各種成分之間有主線交互作用,所以最後會形成複雜的穩定系統,如矽和氧結合,可以形成非常多型態的玻璃;「混沌」則是指因為各種成分間以特殊非線性動力學運動,所以只要起始設定有差異,導致的結果可能就天差地遠,是比較偏動力系統的問題。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2402 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
缺席的普拉修,2008 年諾貝爾化學獎第 4 位得主 (2)
顯微觀點_96
・2025/03/06 ・2645字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學遠見的現實基礎

儘管 GFP 基因定序研究在 1992 年受到查菲和錢永健重視,普拉修卻已經決定轉換跑道,停止在伍茲霍爾海洋研究所的苦悶掙扎。他向所內評審委員會提出中止審核,放棄晉升,並將在一年內離職。

延伸閱讀:缺席的普拉修,2008年諾貝爾化學獎第4位得主(1)

當普拉修把查菲和錢永健要求的 GFP 基因樣本送到,他一面感到終結的哀傷,一面認知到「不問報酬地把 GFP 基因交棒給其他人,是當下最合理的選擇。」尤其是像自己這樣使用公共經費進行研究的學者。

除了對社會的責任感,普拉修也意識到學術現實面,研究資源充沛的成功學者,更有機會實現GFP的潛力。在知名大學任教的查菲和錢永健已在各自領域中奠定名聲,更容易申請經費。而且他們可以用既有經費支應 GFP 轉殖實驗的開銷,不需要特意申請高門檻的 GFP 獨立經費,更不會落到像普拉修一樣,經費耗盡還慘澹經營 GFP 基因選殖一整年。

-----廣告,請繼續往下閱讀-----

此外,查菲和錢永健還有研究生和博士後研究員的充沛學術勞動力,而普拉修則總是獨力進行所有研究勞動。孤立、勞累而缺乏成就感,普拉修沒能成功以綠色螢光照亮細胞生理,也無法驅散他自己周遭的職業陰霾。

查菲能在 1992 年重新連繫上普拉修,是因為查菲向研究生尤斯克亨(Ghia Euskirchen)感嘆,普拉修從未回報 GFP 的基因選殖成果,或許是個難以成功的任務。

查菲與完成第一個線蟲螢光基因轉殖的四人團隊 1
查菲回憶錄中列出為 GFP 基因轉殖技術做出巨大貢獻的四人團隊,左上為普拉修,右上為尤斯克亨,下方兩位是接替尤斯克亨進行 GFP 轉殖實驗的技術人員。Courtesy of M. Chalfie

尤斯克亨當下便和查菲一起打開實驗室電腦,用剛安裝的線上論文資料庫 Medline 搜尋相關文獻。他們不可置信地在搜尋結果第一位看見普拉修的 GFP 基因選殖論文,接著飛奔到圖書館尋找實體期刊,在上面找到普拉修的電話,重新建立聯繫。

在查菲的指導下,尤斯克亨只花一個月就完成了大腸桿菌的 GFP 轉殖,成為第一個螢光轉殖生物的拍攝者。接著,查菲團隊順利地讓線蟲的神經細胞表現綠色螢光,證明 GFP 可以在不同生物體內獨立發光,無須其他來自水母的分子。微觀生物學的未來一片光明。

-----廣告,請繼續往下閱讀-----
199210.14 第一張螢光大腸桿菌照片
1992 年 10 月 14 日,尤斯克亨拍下第一張螢光大腸桿菌照片。當時查菲還沒準備好觀察成功轉殖的螢光樣本,尤斯克亨只好到以前待過的實驗室借用螢光顯微鏡。Courtesy of M. Chalfie

錢永健則是透過與同儕的討論,知道生命科學仍然缺乏合適的螢光標記蛋白,進而在 UCSD(加州大學聖地牙哥分校)新安裝的 Medline 資料庫上搜尋「綠色螢光蛋白」,驚訝地發現普拉修的論文摘要。和查菲一樣,錢永健衝進圖書館影印實體論文,並馬上連繫普拉修,比查菲更早確保 GFP 基因序列的樣本。

查菲團隊轉殖 GFP 的同時,錢永健團隊建構出多種 GFP 變異體,人類開始以不同螢光蛋白觀察細胞內部運作。兩個團隊的成果啟動了學術界和生技產業洪流般的關注與需求,錢永健團隊甚至設立了自動化的樣本供應網頁,只要填寫線上申請書,錢永健實驗室就會無償將螢光蛋白基因載體寄送到府。

值得一份晚餐,或是更多

接下來的十多年,GFP 相關蛋白照亮細胞內的奧秘,成為「生化研究的領航星」,並帶領研發者邁向諾貝爾化學獎。而捨棄 GFP 研究的普拉修,則像是失去指引一般,不僅沒能獲獎,更經歷了顛簸困頓的人生苦旅。

離開伍茲霍爾海洋研究所,普拉修在美國農業部轄下獲得分子生物學技師職位。在政府機構經歷職場摩擦、調職搬遷,使緊繃難熬的氣氛瀰漫普拉修全家之後,他前往亨茨維應徵 NASA 承包商的工程師職缺。在火箭城研發太空診斷器是讓普拉修覺得相對有趣的任務,經費短缺卻再次扼殺了他的期待。

-----廣告,請繼續往下閱讀-----

NASA 在 2006 年裁減生命科學研究經費,普拉修因此被裁員,轉而成為接駁車司機。他在駕駛座上友善健談,意外發現自己其實喜歡工作中和陌生人互動的部分。但是 8.5 美元的時薪讓他入不敷出,連他和查菲共享的 GFP 專利金都在幾年內消耗殆盡。

1994 F Science Gfpcover
1994 年 2 月 11 日發行的《科學》採用查菲團隊的 GFP 線蟲做為期刊封面,象徵螢光蛋白普照分子生物學的光明時代開端。此圖片也收錄在查菲的 GFP 回憶錄《點亮生命》(Lightung Up Life)中。相反的是,普拉修的生涯似乎始終不被綠色螢光照耀。Courtesy of M. Chalfie

儘管事業成果的對比相當符合美國媒體對「不公平」題材的嗜好,普拉修不曾在訪談間表現對查菲和錢永健的嫉妒。

2008 年 10 月 8 號早餐之前,普拉修聽到三位科學家因為 GFP 獲得諾貝爾化學獎,他若無其事地換上灰色制服前往公司開車。不過,上班前他打了通電話到當地電台,糾正他們對錢永健姓氏的發音。

查菲和錢永健在諾貝爾獎致詞與回憶錄中,不約而同地感謝普拉修的研究貢獻,錢永健更經常提供普拉修回到學術領域的工作機會。不願接受研究職位作為恩惠、從斯德哥爾摩回到亨茨維開接駁車的普拉修則笑說「如果他們來到亨茨維,該請我吃頓晚餐。」

-----廣告,請繼續往下閱讀-----

「他們總是有提到我的功勞,而且他們有傑出的科學事業,完成重大貢獻之後,繼續發展他們傑出的科學事業。」普拉修一向對媒體表示,查菲和錢永健是更值得諾貝爾獎的人選,而非中輟離開科學領域的自己。

Imagej=1.53t
發源於 GFP,透過多種螢光蛋白混雜表現而成的 brainbow 技術,是研究生物修復傷口、更新組織時的重要工具。作者: Marco de Leon from Taiwan 顯微攝影競賽

但是,普拉修並非真正「離開」科學領域。他結束 GFP 研究後,不論在政府機構或私人企業,依然從事超過十年的科學相關工作,並作出實際貢獻。相對於逃離科學,他其實是被不理解 GFP 潛力的終身職審查委員會給排除,被迫離開「高賭注的尖端學術領域」(high-stakes academic science)。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
25 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
諾貝爾得獎「助攻王」 :秀麗隱桿線蟲
顯微觀點_96
・2025/02/25 ・2852字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/顯微觀點

科學界的重大盛事-諾貝爾獎,已在 10 月揭曉。今(2024)年生醫獎頒發給維克托.安布羅斯(Victor Ambros)和加里.魯夫昆(Gary Ruvkun),他們以「發現 microRNA 及其在轉錄後基因調控中的作用」獲肯定得到桂冠。而這項重大發現的背後,一種叫做「秀麗隱桿線蟲」(C. elegans)的小蟲子居功厥偉。

生醫獎背後大功臣

安布羅斯和魯夫昆對於基因如何受到調控,如何因活化時間不同而確保各類型細胞在正確時間點發育的問題很感興趣。因此他們研究因基因活化出現問題的兩種線蟲突變株:lin-4 和 lin-14,以瞭解當中的機制。

一開始,安布羅斯先發現 lin-4 基因似乎是 lin-14 基因的負調節因子,但 lin-14 的活性是怎麼被阻斷的,仍然是個謎。因此他系統性地找尋 lin-4 在基因體中的位置與基因序列,也因此意外發現 lin-4 基因只會產生一種異常短、不足以合成蛋白質的核醣核酸分子。

-----廣告,請繼續往下閱讀-----

同一時間,魯夫昆在麻州總醫院和哈佛醫學院新成立的實驗室研究 lin-14 基因的調控。魯夫昆發現 lin-4 抑制的並不是 lin-14 的產生,而是抑制 lin-14 基因產生蛋白質,且發生在基因表現過程的後期。實驗也顯示要抑制 lin-4,必須要有 lin-14 訊息核醣核酸(mRNA)中的一個片段。

安布羅斯和魯夫昆比較了各自的實驗成果,找到突破性的發現:lin-4 部分序列與 lin-14 訊息核醣核酸的關鍵片段中的序列互補。他們進一步實驗,顯示 lin-4 微型核醣核酸(microRNA)透過與 lin-14 訊息核醣核酸中的互補序列結合,來抑制 lin-14 轉譯,進而阻斷 lin-14 蛋白質的產生,也因此揭開 microRNA 介導的基因調控新原理。

這項結果被發表在 1993 年的《細胞》期刊的兩篇文章上。但一開始這樣的基因調控機制被認為是秀麗隱桿線蟲所特有,而不受重視。直到 2000 年,魯夫昆的研究團隊發現了另一種由 let-7基因編碼的 microRNA,科學界的態度才發生變化;因為 let-7 基因高度保存在整個動物界中。

接下來的幾年裡,數百種不同的 microRNA 被鑑定出來,微型核醣核酸的基因調控在多細胞生物中普遍存在;而基因調控若失常,則可能導致糖尿病、癌症或自體免疫疾病。

-----廣告,請繼續往下閱讀-----

這不是秀麗隱桿線蟲第一次「助攻得獎」。

(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。  安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。
(A) 秀麗隱桿線蟲是了解不同細胞類型如何發育的有用模型生物。 (B) 安布羅斯和魯夫昆研究了 lin-4 和 lin-14 突變體。 安布羅斯已證明 lin-4 似乎是 lin-14 的負調節因子。圖/諾貝爾生醫獎新聞稿

成為助攻王的關鍵

2002 年西德尼.布瑞納(Sydney Brenner)、約翰.蘇爾斯頓(John Sulston)和羅伯特.霍維茨(Robert Horvitz)便是從秀麗隱桿線蟲的研究「發現器官發育和計畫性細胞死亡的遺傳調控機理」,進而獲得該年諾貝爾生醫獎。值得一提的是,今年的兩位得主都曾是霍維茨實驗室的博士後研究員。

除此之外,2006 年諾貝爾生理醫學獎也頒給研究線蟲的美國科學家安德魯.法厄(Andrew Zachary Fire)和 克雷格.梅洛(Craig Cameron Mello),以表彰他們「發現 RNA 干擾—雙鏈 RNA 引發的沉默現象」。甚至馬丁.查菲(Martin Chalfie)也利用秀麗隱桿線蟲的觸感接受器神經元「發現並改造綠色螢光蛋白(GFP)」獲得 2008 年諾貝爾化學獎。

秀麗隱桿線蟲為何能成為諾貝爾的「助攻王」呢?布瑞納曾在他的論文中提到:「線蟲適合做基因研究,並且其神經系統可以被精準確定。」他在 1963 年提出以秀麗隱桿線蟲作為模式生物,並於 1974 年發表其在發育生物學和神經科學的成果。

-----廣告,請繼續往下閱讀-----

秀麗隱桿線蟲是第一種完成全基因組定序的多細胞生物。加上體積小、成蟲約長1公釐,以及透明且易於獲取的遺傳物質,使其成為絕佳的模式生物。

其在室溫下大約三天可以從卵生長為可受精的成蟲,在實驗室中以大腸桿菌為食,易於大量培養。並且解凍之後仍能存活,因此適合長時間儲存。加上每隻成蟲可產生約 300 隻後代,適合作遺傳學研究。

易於觀察也是秀麗隱桿線蟲作為絕佳模式生物的關鍵因素。由於細胞譜系固定,研究人員可以使用微分干涉顯微鏡(DIC)觀察每一個細胞的發展,甚至在在螢光蛋白出現之前,就有從受精卵到成體完整細胞譜系的描述。

在線蟲研究的多個工作步驟中,立體、複式或共軛焦顯微鏡都是常見的工具,以符合不同實驗要求。且隨著顯微技術的發展,秀麗隱桿線蟲在發育生物學中的應用和研究也更加多元。

-----廣告,請繼續往下閱讀-----

隨技術發展 研究面向更多元

在挑選合適的線蟲並準備進行遺傳或生化分析的「採蟲」階段,通常會使用末端黏有睫毛的木棍,在立體顯微鏡下關、挑選。然後使用倒立顯微鏡以顯微注射對線蟲性腺進行基因改造。

螢光蛋白(FP)是在線蟲中進行分子和細胞行為研究的核心工具,螢光顯微技術廣泛用於線蟲研究,例如 GFP 及其改進版本(如mScarlet和mCherry)常用於標記和追蹤蛋白質的動態過程。

螢光蛋白也可使用於研究線蟲的染色體外陣列表現或穩定整合到基因組中。現在則有許多研究者使用 CRISPR(基因編輯)技術,將螢光標記穩定地整合到基因組中,這樣可以精確追蹤特定蛋白在細胞內的表現位置和強度。

層光顯微術(Lightsheet microscopy)則可以在不壓縮樣本的情況下,提供更高的空間和時間解析度,特別適合長期追踪線蟲胚胎發育過程。

-----廣告,請繼續往下閱讀-----

除此之外,因為秀麗隱桿線蟲是截至 2019 年唯一一個完成連接體(connectome,神經元連接)測定的生物體,因此一直以來也常被作為神經科學研究的模式生物。

研究者可利用螢光蛋白(如 GCaMP)來追蹤鈣離子濃度的變化,當鈣離子濃度上升時會發出更強的螢光,再透過螢光強度來分析神經系統在睡眠、運動等各種行為時的活動模式。或是進一步利用轉盤式共軛焦顯微鏡、雙光子顯微鏡,抑或結合更強大的影像分析工具,對神經元活動成像並藉此解讀不同行為背後的神經迴路機制

作為模式生物,秀麗隱桿線蟲因為基因組簡單、細胞譜系固定且神經結構已知,為揭示基因調控、細胞發育、神經行為等生物學問題提供了清晰的研究途徑,在生物學研究中佔有重要地位。

儘管已是諾貝爾獎「助攻王」,相信隨著顯微和基因編輯技術的快速發展,秀麗隱桿線蟲仍能在探索人類疾病模型、藥物篩選及再生醫學等應用領域,引領研究新方向。

-----廣告,請繼續往下閱讀-----

參考資料

另感謝台灣科技媒體中心(SMC)舉辦諾貝爾獎解析記者會

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
25 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

3
2

文字

分享

0
3
2
【2023 諾貝爾物理獎】什麼是「阿秒脈衝雷射」?能捕捉到電子運動的脈衝雷射?
PanSci_96
・2023/11/28 ・5966字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

林俊傑《江南》:「相信愛一天,抵過永遠,在這一剎那凍結了時間」

這一剎那持續了多久?這出自佛經的時間單位有多個解讀,其中最短,可以對應的國際單位制是阿秒。 1 阿秒又有多快呢? 1 阿秒等於一百萬兆分之一秒,是已經短到不行的飛秒的千分之一。在這段時間,別說是談戀愛了,連世界上行動最快的光,也只能移動一顆原子直徑的距離。

在阿秒的時間尺度裡,連光都得停下腳步,過去我們認為捉摸不定的電子,也終於將在我們眼前現身。 2023 年的諾貝爾物理學獎,正是頒給了三位帶領人類進入阿秒領域,探索全新世界的科學家。而這項技術,還可能讓電腦的運算速度加快一萬倍!

就讓我們一起來進入阿秒的領域吧,領域展開!

什麼是阿秒脈衝雷射?

今年諾貝爾物理學獎的三位得主分別是 Pierre Agostini 、 Ferenc Krausz 、和 Anne L’Huillier ,表彰他們對阿秒脈衝雷射實驗技術的貢獻。

-----廣告,請繼續往下閱讀-----
圖/X

所謂的阿秒脈衝雷射,指的是持續時間僅有數十到數百阿秒的雷射。當我們能使用脈衝雷射來觀察目標,就好比使用快門時間極短的相機對目標拍照,能捕捉到瞬間的畫面。

2018 年的諾貝爾物理學獎,就頒給了極短脈衝雷射的研究。短短 5 年後,雷射領域再次得獎,但這次是更快的阿秒雷射,能捕捉到電子運動的超快脈衝雷射。

世界上沒有東西能真正的觸碰彼此?看見電子能帶來什麼突破?

為什麼看見電子的運動那麼重要呢?我們複習一下原子的基本構造,在原子核之外,帶有微小負電荷的電子,被帶正電的原子核束縛住。量子力學告訴我們電子沒有確切的位置,而是以特定的機率分布在原子核周圍的不同地方,也就是所謂的電子雲。

圖/YouTube

雖然電子的體積比原子核小很多,但電子雲的範圍,卻占了原子體積的絕大部分。在物理或化學反應中,真正和其他原子產生交互作用的,幾乎都是這些外面的電子。在電影《奧本海默》中,當男女主角手心貼著手心,奧本海默這時卻說:「世界上沒有東西能真正的觸碰彼此,因為我們觸摸到的物體,都只是其中原子的電子雲和我們手上的電子雲產生的斥力。」

-----廣告,請繼續往下閱讀-----
圖/screenrant

對了,這種話也只有奧本海默跟五條悟可以講,一般人請不要隨便亂牽別人的手。

除了和心儀的他牽手,不同的電子排列狀態也會直接影響物質的化學活性、材料的導電導熱等基本性質,各種化學和物理過程都和電子息息相關。從非常實際的層面來說,電子可以說是物質世界最重要的基本單位。所以不難想像,如果我們能看見電子,甚至獲得可以操縱個別電子排列與能量的技術,我們能真正成為材料的創世神,許多不可能都將化為可能,是相當重大的突破。

捕捉電子運動有多困難?

但要操縱電子可不是什麼簡單的事,不只是因為電子非常小,更重要的是他們動得非常快。具體來說,電子在原子周圍跳動的週期時間尺度大約是十的負十八次方秒,也就是一阿秒。一顆原子的大小約是十的負十次方公尺,速度等於距離除以週期,換算下來,電子雲差不多是以光速等級的速度在原子核周圍跳動。

圖/wikipedia

如果要捕捉到阿秒尺度的電子運動,就必須將實驗的時間解析度也提升到阿秒等級,否則就會像是用長曝光鏡頭拍攝亞運競速滑冰比賽一樣,只能拍到一團糊糊的影像,而沒辦法分出勝負。

-----廣告,請繼續往下閱讀-----

可是,在 1980 年代,脈衝雷射最快只能達到十的負十五次方左右,還只有飛秒等級。而且光靠當時的技術和材料優化,已經沒辦法再縮短脈衝時間了,因此這時候,就要從原理上重新打造一套方法了。

如何製造更快的脈衝?

首先,要製造更快的脈衝並不是用頻率更高的電磁波就好。你想,我們在拍照時,想要讓曝光時間更短,要改善的不是把室內光源從可見光改成頻率更高的紫外光,而是調快快門的開闔速度,讓光一段一段進入感光元件中,變成影片一幀一幀的畫面。而這一段一段進入像機的光訊號,就像是我們的脈衝。

不論是皮秒雷射、飛秒雷射還是阿秒雷射,一直以來在做的都是同一件事,在整體輸出功率不變的情況下,讓每一次脈衝的持續時間更短,同時單一次的功率也會更高。簡單來說,就是要從無數次的普通攻擊,變成每一次都是集氣後再攻擊。

但要怎麼為光集氣呢?光和其他波動一樣,可以和其他波動疊加。把不同頻率的光疊加在一起,波峰和波谷會抵消,波峰遇上波峰則會增強。只要用特定的比例組合許多不同頻率的光,就可以在整體總能量不變的情況下,產生一個超級窄的波峰,其他地方全部抵銷。

-----廣告,請繼續往下閱讀-----

1987 年,本次諾貝爾獎得主之一的 Anne L’Huillier 教授發現,當紅外線雷射穿過惰性氣體時,氣體會被激發放出整數倍頻的光。也就是氣體放出許多不同頻率的光,而這些頻率都是原本光源頻率的整數倍,從兩倍三倍到三十幾倍以上的高倍頻光都有。而橫跨這麼大頻率範圍的光,就能組合出時間長度很短的脈衝光。

不過這聽起來未免也太好康了,真的有那麼簡單嗎?

這個看似魔法的實驗背後其實有著相當簡潔的物理圖像。電子原本是被電磁力束縛在原子中,當一道強度夠強的雷射通過氣體原子,原本抓住電子的電位能被雷射削弱。

雖然這道牆只是矮了一些可是還是存在,但此時,在電子的大小尺度下,量子力學發揮了作用。調皮的電子有機會透過量子穿隧現象,穿過這道束縛,暫時逃離原子核的掌控。關於量子穿隧效應的介紹,我們近期也會再做一集節目來專門介紹。

-----廣告,請繼續往下閱讀-----

但電子還來不及逃遠,雷射光已經從波谷翻到波峰。電磁波的波谷與波峰,不是指能量的高和低,而是指方向相反。因此在相反的電磁場方向下,不幸的電子被推回原子核附近,再度被原子核捕獲。但在這欲擒故縱、七擒七縱的過程後,電子並非一無所獲,他所得到的動能會以光的形式重新放出。

而因為這些能量最早都來自雷射,因此電子放出的光波長,也剛好會是雷射的整數倍。再說的細一些,你可以理解為這些電子在吸收一顆顆光子後,一口氣釋放這些能量,所以能量都是一開始光子的整數倍。

在 1990 年代,科學家已經掌握了這個現象背後的原理。但一直到千禧年過後。這次諾貝爾獎得主之一 Pierre Agostini 教授和他的研究團隊才終於在適當的實驗條件之下,利用高倍頻光打造出了一連串寬度只有 250 阿秒的脈衝。同時第三位得主 Ferenc Krausz 也使用不同方法,分離出 650 阿秒的脈衝。

最後,獲得阿秒脈衝這個祕密武器之後,我們的世界將迎來哪些變化呢?

-----廣告,請繼續往下閱讀-----

阿秒脈衝在各領域的應用

其實啊,有在關注諾貝爾獎都知道,諾貝爾獎通常不會頒給時下正夯的新興研究,前面講的研究,實際上都已經是二十多年前的往事了,而這些辛苦的科學家會在這麼多年後拿下諾貝爾獎的榮耀,正是因為阿秒雷射的發明經過了時間的考驗,成為非常普及的實驗技術,而且被大家公認為重要的科學貢獻。

當然,今年生醫獎的 mRNA 是個超快例外,有興趣的話,別忘了點擊下方影片,看看編劇都編不出來的 mRNA 研究歷程。

說了那麼多,阿秒雷射究竟對人類生活有什麼幫助呢?當然,它能讓我們更深刻了解物質還有光的本質,但是除了幫電子拍下美美的照片放在期刊的封面上,阿秒雷射可以用來做什麼?

在過去這二十年,許多研究已經找到了相當有潛力的應用。

-----廣告,請繼續往下閱讀-----

舉例來說,在醫療方面,阿秒雷射可以用來分析血液或尿液樣本。控制良好的超短脈衝可以精準的刺激生物樣本中的各種有機分子,讓這些分子震動並放出紅外線訊號。如果使用的脈衝長度太長,分子釋放的訊號就很容易和原本施加刺激的雷射混在一起,造成量測的困難。唯有阿秒等級的超短脈衝能夠實現這樣的量測。

這些紅外線光譜就像是質譜儀一樣,能幫助我們快速分析血液中的蛋白質、脂質、核酸等重點物質的關鍵官能基狀態。並透過機器學習的方式整合,成為個人化的健康狀態報表,或是做為診斷的依據,將精準醫療提升到全新的層次。

圖/attoworld

不只如此,發送超短脈衝的技術也可能革新當今的電腦運算。電腦運作的方式就是利用電晶體這種微小的開關,不斷的開開關關去發送一跟零的訊號,所以開關電流的速度便決定了你的運算速度。以半導體為基礎的電晶體,工作頻率通常不超過上百 GHz ,在時間上也就是十的負十一次方秒。

自從阿秒雷射技術普及之後,就有科學家想到:既然雷射脈衝的速度更快,那不如就別用半導體了,改用光學脈衝來控制電流作為運算的媒介。這個概念叫做光學電晶體(Optical Transistor)。

今年初,亞利桑那大學的團隊便發展示了如何利用小於十的負十五次方秒的超短雷射脈衝,來開關電流並傳送一與零的位元,這個頻率比現有半導體電晶體快了一萬倍以上。這顯示了光學方法的操作頻率可以有多快,或許能讓我們突破訊號處理和運算上的速度瓶頸。

看完這些便可以理解,阿秒等級的超快雷射脈衝的確是相當近代的一個科學里程碑。就像是科學革命時望遠鏡和顯微鏡的發明,讓人們看見那些最遠和最小的事物,超快脈衝用最快的時間解析度,讓我們看到許多人類從未看過的景象。

阿秒脈衝雷射的出現,是科學上的一個里程碑,讓我們能用更高的時間解析度,讓我們看到許多過去從未看到的景象。最後也想問問大家,在雷射這一塊,你最期待有哪些應用,或者最希望我們接著來講哪個主題呢?

  1. 為什麼醫美、眼科手術那麼喜歡用飛秒、阿秒雷射,真的有比較好嗎?
  2. 使用雷射脈衝的光學電晶體真的有可能取代傳統電晶體嗎?
  3. 除了光學電晶體,最近很夯的矽光子技術,聽說裡面也有用到雷射,可以一起來介紹嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2402 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。