0

3
0

文字

分享

0
3
0

2021 諾貝爾物理學獎:極度燒腦的「氣候模型」及「複雜物理系統」ft.許晃雄老師、林秀豪老師【科科聊聊 EP63】

PanSci_96
・2021/11/02 ・3801字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

諾貝爾物理學獎這次由真鍋淑郎(Syukuro Manabe)、哈斯曼(Klaus Hasselmann)、帕里西(Giorgio Parisi)三位科學家拿下。本屆物理學獎的核心概念「複雜物理系統」,背後還證實了氣候變遷的意義,也鼓勵年輕學者放膽去做氣象學研究!

Nobel_2021_physic

得獎者帕里西用統計力學中的「副本方法(Replica method)」破解出複雜材料中的規律,進而了解「複雜系統」。而同樣為「複雜系統」的氣候,則由真鍋和哈斯曼教授各自開創出的氣候模型,讓我們從中「了解地球氣候」和知道「地球氣候如何被人類影響」。

泛泛泛科學邀請投身在氣象學和物理學多年的許晃雄老師和林秀豪老師,除了解釋三位得獎者的研究、「複雜系統」和「混沌」的定義與差異,更是說出了他們在做跨領域研究時遇到的困難、分享他們對跨領域的想法!

本次專訪感謝 台灣科技媒體中心 的協助。

  • 01:42 真鍋淑郎、哈斯曼、帕里西研究簡介

本屆諾貝爾物理學獎得獎者分別是真鍋淑郎(Syukuro Manabe)、哈斯曼(Klaus Hasselmann)、帕里西(Giorgio Parisi)。

真鍋和哈斯曼都是氣候科學家,他們創造了氣候模型來模擬全球暖化。透過真鍋淑郎的模型,讓我們可以了解全球溫度升高,和大氣中的二氧化碳的含量有關;從哈斯曼創建的模型則證實了二氧化碳,都是源自於人類活動,因此了解人類是如何影響氣候和複雜的地球系統。帕里西則是研究「複雜系統」的物理學家,他從無序的複雜材料中,發現了複雜系統中隱藏的模式,而這個理論後續也被許多的科學領域所應用。

延伸閱讀:
The Nobel Prize in Physics 2021
【2021諾貝爾物理學獎】如何觀測地球暖化?有「氣候模型」及「複雜物理系統」就搞定!
2021諾貝爾物理獎記者會會後新聞稿
2021諾貝爾物理獎官方新聞稿全文翻譯

  • 02:36 什麼是「複雜系統」?

複雜系統是「隨機、無序、難以理解」的系統,在自然界中最常被提及的複雜系統即為「椋鳥群飛」。「椋鳥群飛」是指雖然每一隻鳥的飛行路徑都無法預測,甚至會隨時調整,但當尺度放大到一整群後,卻變成可以預測。

自然界中到處都可見許多複雜系統,若要以我們的生活來舉例,這個社會也可以算是一個複雜系統。

  • 05:24 地球科學領域也有很多複雜系統的現象

地球科學領域中也有許多複雜系統,例如波浪原本是雜亂,但逐漸匯集變湧浪;或是海面上的小對流原本是雜亂的,但在匯集後則成為颱風。

天氣是一個雜亂的現象,想要預測非常困難,但若將「天氣」視為「天候」來看時,我們就能找出背後的系統,因此氣候變遷也算是一種複雜系統的現象。

  • 07:06 真鍋創造簡單的氣候模型,計算結果近乎超級電腦

真鍋淑郎是第一個地表模型開發者,而他所發展的模型,也讓大眾了解大氣中增加的二氧化碳含量,是如何讓地球表面溫度增高。

在 1960 年代,真鍋淑郎提出的氣候模型在考量溫室氣體時,他發現二氧化碳濃度變兩倍時,會讓地球溫度上升兩度,因此他的模型證實了全球溫度的升高,是和大氣中二氧化碳的含量有關。

真鍋淑郎所研究出的模型,除了可以去了解古氣候,也能去推測未來氣候,而這些結果和超級電腦所運算的結果是很接近的。真鍋淑郎的模型,提供屬於複雜系統的「氣候」一個可以模擬的系統,這個重要貢獻後來還供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

延伸閱讀:2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文【2021諾貝爾物理獎】複雜系統

  • 18:00 真鍋的氣候模型無法模擬極端氣候

雖然說真鍋淑郎的模型能夠預測氣候,但是對於極端氣候或是尺度小的氣候,如:午後雷陣雨,則還無法做到。

  • 19:13 哈斯曼證明「氣候模型」可靠性、人類是加劇溫室效應的兇手

哈斯曼提出了一個把天氣和氣候連結在一起的模型。他以「隨機氣候模式」證實了天氣雖然混亂多變,但若把尺度拉大來看天氣現象,就能預測出氣候。他所提出的模型同時也解釋「氣候模型」在預測氣象上,仍是可靠的預測方式。

此外,哈斯曼還開發出可以辨識自然現象,或是人類活動時,在氣候中留下的痕跡。這個「指紋偵測模式」也證實了造成大氣中的溫度升高,並加劇溫室效應的源頭,都是來自於人類的活動。

延伸閱讀:氣候變遷議題躍上檯面、理解物理無序系統,2021 諾貝爾物理學獎得主出爐

  • 23:29 尺度對了,「複雜系統」就看得出來了!

當觀察的尺度過小時,就會不容易看出各種事物中的秩序或趨勢。但若把觀察的時間或模式尺度放大來看,就能找出規律。如同「椋鳥群飛」中單看一隻「鳥」會不容易看出規律,但把尺度放大到「鳥群」,則可以看出彼此間的交互作用,進而做出預測。

  • 28:12 帕里西找出複雜材料中的規律

要計算複雜系統是非常困難的一件事。有一種類似玻璃結構的複雜材料「自旋玻璃(spin glass)」,它是一種在非磁性金屬中摻入少量磁性金屬的合金的物質。但因為這些金屬排列方式隨機混亂,所以基本上無法預測。

但帕里西卻將要計算複雜系統時,需要使用的對數函數平均值,以副本對稱(replica symmetric)的概念映射到多項式平均值,最後成功解出了自旋玻璃的規律。帕里西的貢獻就是提供一個理論讓科學家能在複雜系統中找到規律,甚至有機會提出預測長期無序行為的方法,也能將這個理論運用在地球氣候變遷預測上。

  • 31:08 本屆物理獎背後意義:氣候變遷是科學嚴謹地觀測分析結果

本屆物理獎的各個獲獎成就,皆是圍繞在「複雜系統」,讓我們能更了解這個系統的特性和演化。同時,諾貝爾物理獎會頒發給氣象學家,表示溫室效應的加劇也終於被全世界意識到。

諾貝爾物理學委員會主席 Thors Hans Hansson 表示,今年的物理獎也顯示出了我們對地球氣候變遷的理解,都是透過科學嚴格地觀測分析。而這些科學家研究了複雜系統中的長期效應,也讓未來能開創新的研究領域。

  • 34:40 氣象學被物理學界肯定,可以鼓舞更多年輕學者

過去關於氣象學的研究,多半是不會受到諾貝爾獎的肯定。但透過這次的獲獎,表示氣象學也逐漸被物理學界看到,對於鼓勵年輕學者投入這個領域中,是很大的助力。

  • 37:10 諾貝爾獎的肯定是幫重要氣候現象做背書

1995 年諾貝爾化學獎得主 Sherwood Rowland 以發現氟氯碳化合物會對地球臭氧層破壞而得獎。也因為受到諾貝爾獎的肯定,後續相關政策和研究的推動,都能獲得更好的資源。

本屆諾貝爾物理獎也強調氣候變遷的問題,表示全球暖化的問題受到認同,才會向對此有貢獻的科學家致意,並希望能透過研究的獲獎,為這些現象背書,不讓這些議題繼續被泛政治化。

延伸閱讀:諾貝爾化學獎得主羅蘭德與臭氧層破洞

  • 39:02 有想做跟想解決的事,就放膽去跨領域

現今在美國與臺灣,學生們都是因為有想做跟想解決的問題,所以才會選擇自己想就讀的科系。

現在的研究與其去明確切分自己的領域,不如運用上自己所學,放膽去做研究自己想研究的現象。

  • 45:50 想在臺灣跨領域該怎麼辦?

「跨領域參與」是未來很重要的方向,但目前臺灣的學術界仍是較傳統分界狀態,學者如果想要跨領域,通常還是跟隨有經驗的研究者入門,才會比較容易。

雖然跨領域是未來趨勢,但並非每個人都該往跨領域前進。如果說能夠讓學生在專業領域基礎紮穩,但是目光能放到更遠處,對於跨領域不會有排斥感,這樣就能多少替學生開啟跨領域的一扇門。

  • 55:13 不用為了跨領域而跨領域,了解自己的想法最重要

學生除了把主領域知識做好,也應該要帶給他們跨領域的想法。但現在臺灣的教育行政體系仍很難做到,也是因為沒有太多的師資資源。

不過有時也能以合作方式去合作,不用強求每個人都具有跨領域的能力,了解自己最想做的事情才是最重要的。

  • 01:01:20「複雜系統」和「混沌」完全不一樣

「複雜系統」就是因為各種成分之間有主線交互作用,所以最後會形成複雜的穩定系統,如矽和氧結合,可以形成非常多型態的玻璃;「混沌」則是指因為各種成分間以特殊非線性動力學運動,所以只要起始設定有差異,導致的結果可能就天差地遠,是比較偏動力系統的問題。

文章難易度
PanSci_96
1011 篇文章 ・ 1138 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

1
0

文字

分享

0
1
0
薛丁格的貓是死是活?再不懂點量子就落伍了!——《我們的生活比你想的還物理》
商周出版_96
・2022/12/06 ・2327字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

奧地利的物理學家薛丁格最初閱讀愛因斯坦和德布羅意的論文後,也注意到物質波的概念,並進而闡釋發展成波動力學,促成量子力學誕生。薛丁格的波動力學是後來量子力學的具體論述之一, 薛丁格波動方程式更是量子力學最重要的方程式之一,也是現代人研究發展量子電腦的重要思維。

繼續討論薛丁格的想法前,容我「插播」兩種說法,一種是「哥本哈根詮釋」,一種是「愛因斯坦悖論」。

萬物受機率支配?愛因斯坦可不這麼認為

前面提到電子的雙狹縫干涉實驗,說明在微觀世界的電子具有波動性。在電子的雙狹縫干涉實驗中,為何被觀測到的電子只有在屏幕的一點留下痕跡呢?照理說,在屏幕的任意地方都能發現電子的蹤跡。然而,當我們「觀測」到屏幕的一「質點」的電子的瞬間,電子的波函數立即「塌縮」。

物理學家解釋這是因為電子的波函數與發現機率有關,亦即觀測電子時,電子波會縮小分布範圍, 呈現電子的粒子形式。活躍於哥本哈根的波耳等人認同這種融合「波函數塌縮」和「機率詮釋」的想法,因此成為「哥本哈根詮釋」。至於「電子波為何會塌縮?」是一個未解之謎。

自然界真的受到機率的支配嗎?真的大哉問啊!

愛因斯坦儘管預言光子存在,提出光量子論,但他強烈反駁「機率論」的觀點。對於哥本哈根學派的「機率詮釋」和「波的塌縮」,愛因斯坦以「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋, 完全不能接受哥本哈根學派主張「決定一切事物的上帝竟然會依照擲出骰子出現的點數決定電子的位置」。

「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋。圖/GIPHY

愛因斯坦也指摘「幽靈般的超距作用」。他認為未來已經確定,反駁「自然界曖昧不明」的不確定性,進一步指出「自然界並非曖昧不明,而是量子論還不完備,無法正確闡述自然界的緣故」。以上所提,是量子力學發展歷程的觀點論戰的故事,包含 1935 年,愛因斯坦和共同研究者波多斯基(Boris Podolsky)、羅森(Nathan Rosen)聯合發表觸及量子論矛盾的「EPR 悖論」(Einstein-Podolsky-Rosen paradox)。

迄今,我們已經知道微觀世界,電子等粒子會自己旋轉,具有「自旋」的物理量,或直接用專業術語「自旋角動量」,自旋的方向依據量子論會以多個狀態同時存在,並存或疊合。

愛因斯坦等人認為,對於相距非常遙遠的電子,不可能無時間限制,瞬時互相影響;根據狹義相對論的說法,沒有任何物體的飛行速度比光速還快。觀測相距遙遠的兩粒子之一,竟然會在瞬間同時決定兩者的狀態,這樣特殊奇妙的現象,愛因斯坦稱之為「幽靈鬼魅般的超距作用」。

沒錯!又要提那隻貓了

薛丁格曾以「量子糾纏」解釋愛因斯坦論文中的悖論現象,指出互相遠離的粒子的性質,並非各自獨立,而是成組決定,無法個別決定,這個現象是 2022 年諾貝爾物理學獎得獎主題的「量子糾纏」。如果能這樣思考,那麼就不會認為粒子是瞬間傳送並影響到遠方粒子,有如「幽靈般的超距作用」。

貓同時是活和死的「疊加」。圖/維基百科

談到量子力學,「薛丁格的貓」此知名想像實驗必定會浮現在讀者的腦海中吧?此實驗探討一隻貓的狀態究竟是活或死的,而實驗結果是:貓同時是活和死的「疊加」。如果以古典物理學來思考,會顯得極其荒謬;但若以微觀世界視之,這項理論其實符合電子波粒二象性的機率概念。

根據 1927 年量子力學學派的詮釋,觀察一個量子物體時,會干擾其狀態,造成其立即從量子本質轉變成傳統物理現實。原子及次原子粒子的性質,在量測之前並非固定不變,而是許多互斥性質的「疊加」。此觀念的知名例子就是「薛丁格的貓」實驗。

在這個想像的實驗中,一隻貓被鎖在一個箱子中,並有一個毒氣瓶,在量子粒子處於某狀態下毒氣瓶會破裂,但若該粒子處於另一狀態,則毒氣瓶會完好無損。如果將箱子封閉,此粒子的量子狀態是兩種狀態「共存」的情況,也就是說,毒氣既是已從瓶中放出,又被封存在瓶中,也因此,箱中的貓同時既是活的也是死的。當箱子打開時,由於此量子疊加狀態瓦解了,因此在那瞬間,這隻貓或許被毒死,或許得以保命。

當箱子打開的瞬間,這隻貓或許被毒死,或許得以保命。圖/《我們的生活比你想的還物理

物理小教室

  • 索爾維會議

量子力學是近代物理學的重要基石,與相對論被認為是近代物理學的兩大基本支柱,許多物理學理論和科學,如原子物理學、固態物理學、核物理學和粒子物理學,都以其為基礎。物理學界往往會在物理重要會議激盪出重要的論述,例如 1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」,當時世上最重要的物理學家,都聚集在一起討論新的量子理論。

1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

0

0
0

文字

分享

0
0
0
一卡在手便利無窮,悠遊卡的設計原理——《我們的生活比你想的還物理》
商周出版_96
・2022/12/05 ・2482字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

時事話題

NEWS|在課堂介紹電磁波概念時,有位同學佳琦舉手提問筆者:「老師,用悠遊卡刷進捷運站非常方便,那個背後的原理和電磁波有關嗎?」另一位同學婕妤回答:「應該是悠遊卡會發出電磁波,傳遞訊息到門閘的感應器吧?」

悠遊卡如今早已融入臺灣大都會的生活中,不論是捷運、超商、購物或搭乘公車,悠遊卡在手,便利許多。然而,悠遊卡內並無電池,也不需要插入讀卡機,為何能夠溝通而傳遞資訊呢?

刷悠遊卡進出捷運站,其背後原理和電磁波有關嗎?圖/Pixabay

為何沒裝電池的悠遊卡可以產生電流?

悠遊卡系統主要是應用法拉第電磁感應定律來辨識與傳遞資訊,此與無接觸感應技術有關,該技術稱為「無線射頻辨識系統」(radio frequency identification,RFID)。完整的一套無線射頻辨識系統,是由讀卡機(reader)、電子標籤(tag)和應用程式資料庫電腦系統部分所組成。

運作過程先由讀卡機發射一特定頻率的無線電波能量給電子標籤,藉此驅動標籤內建電路,輸送內部的身分代碼,以開啟溝通之路。

若以法拉第電磁感應的物理概念解釋,讀卡機產生變動磁場, 同步提供電子標籤變動磁場,驅動電子標籤產生感應電流,也就是讓悠遊卡內部迴路產生感應電流,並讓電子標籤發送身分代碼訊息給讀卡機,也即驅動內部晶片能夠發送訊號,讀卡機依序接收資訊、解讀此身分代碼,再透過應用程式資料庫系統讀取悠遊卡內的晶片資料,完整達成溝通與解讀任務。

電子標籤發送身分代碼訊息給讀卡機,即驅動內部晶片發送訊號。圖/維基百科

每一張悠遊卡都有獨立的電子標籤,當卡片靠近悠遊卡標誌的磁場感應範圍內,即可透過電磁感應的原理,驅使電子標籤內的線圈產生感應電流,此電流供應電子標籤傳送資訊至讀卡機,以解讀晶片資料。

或許讀者會好奇,沒有電池的悠遊卡怎麼產生電流呢?這個問題也需要以法拉第電磁感應定律說明。

依法拉第電磁感應定律,悠遊卡的線圈迴路會因為磁場強弱的變化,以及通過的面積區域角度變化而產生類似電池驅動電流功能的「感應電動勢」,或稱為感應電壓。此感應電壓大小與線圈匝數及每匝線圈中磁場隨時間的變化率有關。匝數愈多,磁場變化率愈大,悠遊卡迴路中的感應電壓愈大,產生的感應電流就愈大。

當卡片靠近標誌的磁場感應範圍內,即透過電磁感應產生感應電流。圖/《我們的生活比你想的還物理

因此,悠遊卡雖然沒有內建電池,但可以透過電磁波的應用,採用無線射頻辨識系統,在運作時,讀卡機持續發出電磁波,當卡片接近時,其內部線圈產生感應電動勢,再進一步驅動感應電流。此感應電流讓卡片內的晶片發出電磁波,回傳必要的資訊給讀卡機,完成感應過閘的流程。

以臺北、臺中和高雄的悠遊卡來說,採用的是無線射頻辨識系統模式,屬於比較低頻率的電磁波,卡片必須距離讀卡機約 14 公分內,才能讀取卡片的晶片資料。因此若將悠遊卡裝在比較厚的皮夾或兩張磁卡疊在一起,可能無法第一時間完成讀卡,而形成「卡片無法讀取」的「卡卡」現象,建議單純使用悠遊卡過閘,較能順暢通過閘門。

其他如進出家門的感應磁扣、停車場的票卡、信用卡感應支付、國道收費系統 ETC 等,皆是應用無線射頻辨識系統 RFID 的技術,只不過國道收費系統 ETC 的感應器的感應距離約需 60 公尺內,才能順利讀取通過車輛的相關資訊。

台灣高速公路的電子道路收費系統(electronic toll collection, ETC)。圖/維基百科

物理小教室

  • 手機行動支付的物理學原理

手機支付的運作原理也是基於 RFID 發展而出的近場通訊(near-field communication,NFC) 技術。目前近場通訊技術採用頻率為 13.56 MHz 的電磁波,以 106 kbit/s、212 kbit/s 或 424 kbit/s 這 3 種速率傳輸資料,bit 翻譯為位元,是電腦資料的最小單位。

利用手機支付時,須靠近刷卡機約 4 公分距離內,此時可藉由電磁波傳遞相關資訊,完成付款手續。近場通訊技術不只有用在手機支付, 也可運用傳輸文字、照片、音樂檔案,是目前手機常見的內建功能。

  • 電磁感應的進階說明

電動勢(electromotive force, emf)可以驅動導體內的電荷移動, 產生電流。電池因為內部材料的屬性,會在正負極產生固定的電位差或電壓。電動勢是電池正負極間的電位差,也常稱為電壓,其國際單位制(SI)單位為伏特(V)。

導體內的電流與電壓成正比,假設導線的電阻及電池的內電阻都可略去不計,電路中流動的電流是電壓與電阻相除後的數值。可知電池的電動勢,可以驅動迴路上的電流,讓燈泡發光發熱。

然而,一個未接電源的迴路導線圈,可不可能產生電流?可以。若是通過迴路導線圈的磁場變化或磁通量改變,也會產生感應電流,這是發電機的原理,也是物理學家法拉第和冷次的電磁感應概念。

電磁爐和捷運列車的磁煞車也是運用電磁感應的概念。電磁爐內部的主要構造是由絕緣體包覆的導線環繞的線圈,當交流電通過線圈時, 電磁爐表面就會產生隨時間改變的磁場,這個磁場的變化會同時在鍋子底面產生應電流,再透過電流熱效應加熱鍋子,也加熱食物。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。