0

0
0

文字

分享

0
0
0

達文西奇想系列模型夏日限定優惠

PanSci_96
・2014/07/31 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 400 ・四年級

-----廣告,請繼續往下閱讀-----

feature

8 月:擁有達文西 1.2.3.4.5.6.7.8 種天才研究

PanSci 不僅鍵盤上聊科學,也兼倡實作精神!
首度推出達文西系列模型,讓你動手指體會科學巨匠的工程藝術。

無窮盡的好奇心、是藝術家也是科學家,李奧納多.達文西(Leonardo da Vinci)神秘精細的發明手稿,複雜難解超越當代工程技術,只有少數設計在當時能被實現。

藉由現代細膩電腦繪製,只要拼湊簡單的零件模組,就能完成複雜的機械套件。捕捉達文西五百年前描繪腦中靈感的熱情時刻,體驗活躍多變的創作想像!

毋需膠水、不用電池,所有零件均可進行實際動作

-----廣告,請繼續往下閱讀-----

既然是重現大師手稿,當然每套模組都能進行實際機械運作。
每週限定發售兩款工藝,集滿四週八款,微型工藝博物館再度重現!

達文西奇想系列模型

飛行器 槳葉船 時鐘

飛行器

(短片)

槳葉船

(短片)

時鐘

(短片)

自動車 機械鼓 裝甲車

自動車

(短片)

機械鼓

(短片)

裝甲車

(短片)

加農炮 投石器

加農炮

(短片)

投石器

(短片)


PanSci 的有禮貌好康活動

活動A|文西30秒-影片徵件

憋尿對膀胱不好,憋著科學不講對大家不好,達文西的發明研究手稿收藏起來,科技不知道晚進步多少年。希望大家可以一起來分享科學!

活動辦法:
拍攝 30 秒短片並上傳至自己的facebook塗鴉牆,並將連結留言至PanSci粉絲團置頂活動文,即完成影片報名。

影片內容:
以 30 秒以內長度的影片,針對一組達文西系列模型,向其他泛科學讀者們分享相關科學知識,影片呈現方式不限,不一定要使用模型實體,可使用圖片,但所提及的模型一定要出現。

獎項:

  1. 幽默趣味獎 × 1   編輯群笑越久分數越高,最高分者得獎。
  2. 毀人不倦獎 × 1   科學內容深入淺出,編輯群看完頻頻點頭,點越久分數越高,最高分者得獎。
  3. 人氣影片獎 × 1   留言按讚數最高者得獎;若有兩名並列第一,則抽一名得獎。

活動時間:8/20 0:00 起跑,8/28 24:00 截止;9/1 公佈得獎名單。

獎勵: 每位得獎者可得到 8 入組全套

——————

活動B|叫文西來-開賣商品分享活動

時間: 7/31 ~ 8/2 24:00 截止(對!截止囉)

活動辦法:
在PanSci FB專頁置頂活動文下留言「8/5 達文西投石機加農砲矛矛大對決」按讚並分享,就會抽出 2 位幸運者各贈送 1 組開賣商品:投石機&加農砲。

得獎名單將於 8/4 (一) 公布,請密切注意得獎訊息。得獎者請於 8/8 (五) 17:00 前私訊姓名、電話、收件地址,逾期視同放棄。

文章難易度
PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

16
2

文字

分享

0
16
2
和鳥類學飛翔,讓人類學會飛行奧秘——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/30 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

飛行的物理學

「觀察在稀薄高空中飛翔的老鷹,牠的翅膀是如何鼓動著空氣,讓沉重的身體得到支撐。物體對空氣施加的力量,等於空氣對物體施加的力量。」15 世紀末,達文西在筆記本如此寫道。達文西僅憑觀察,就掌握飛行的原理了。

飛行的原理讓達文西深深為之著迷。他發明人力驅動的飛行器,試圖證明人類能否飛上天,還設計人類可以操縱的翅膀。他仔細研究飛行中的鳥,並且提出飛行的假說:「鳥類張開寬寬的翅膀,加上短短的尾巴,準備起飛,」他接著寫道,「鳥類必須用力抬起翅膀,然後放下翅膀拍動下方的空氣。」

金鵰的翅膀善用空氣分子,身體起飛與降落。圖/天才達文西的科學教室

上圖的金鵰比空氣重,但是翅膀造形卻能善用空氣分子,讓身體起飛與降落。金鵰飛行的時候,你認為氣流通過翅膀上方與下方時,哪邊的速度較快?量量看, 1 公尺有多長,是金鵰身體的長度;再量量看 23 公尺有多長?這是牠的翅膀展開的長度!再想像一下:金鵰拍動翅膀、凌空起飛的模樣。你認為翅膀上方還是下方的氣壓比較大?可以解釋原因嗎?

達文西的《鳥類飛行手稿》。圖/天才達文西的科學教室

上圖的字跡與插圖,出自達文西的《鳥類飛行手稿》 (Codex on the Flight Of Birds)。他的研究,造福許多後世的科學家,包括丹尼爾•白努利 (Daniel Bernoulli)。他在 1738 年解釋了空氣流動的科學原理。

-----廣告,請繼續往下閱讀-----

白努利認為:鳥類飛行時, 因為翅膀結構的關係,空氣通過翅膀上方的速度較快, 使得氣壓較低,而空氣通過翅膀下方的速度較,使得氣壓較高。翅膀上方與下方的壓力差,進而造成了升力。

編按:解釋飛機能升空飛行的物理概念,除了白努利概念外,尚有其他因素,例如飛行時的角度、飛機造形和其他效應等。

有許多物理概念可以解釋飛機能升空的原因。圖/天才達文西的科學教室

飛機為什麼可以在天上飛?

開始調查吧!

我們蒐集資訊,一起設計翅膀,就跟達文西一樣!我們將蒐集涵蓋翅膀形狀、空氣與運動方面的資訊,也跟達文西一樣,提出許多問題。

問題:淚珠的形狀,和飛行有什麼關係?

下圖的形狀,好像淚珠的一側。看到這種形狀,是否讓你聯想到它與飛行的關係呢?

-----廣告,請繼續往下閱讀-----
翼型會聯想到噴射機的機翼或鳥翼的形狀。圖/天才達文西的科學教室

答案:這就是翼型。

淚珠的形狀,我們稱為「翼型」。這樣的造形,可能讓你想起噴射機的機翼或鳥翼的形狀。翼型的前端是較厚的圓弧,後端則逐漸變薄、變窄。

飛行中的翼型向前挺進,空氣分子往上也朝下移動。翼型下方的空氣分子,移動的速度慢於上方滑過的空氣分子。空氣分子移動速度較慢,造成的氣壓就比較大。想像一下:翼型下方的空氣,等於處在被壓縮的狀態,翼型下方,較強的氣壓向上推,造成的力量稱為「升力」

模擬飛行中翼型的空氣分子移動狀態。圖/天才達文西的科學教室

受到鳥類的啟發

看到鳥翼的切面,居然就是翼型,你是否大吃一驚呢?說穿了,航太工程師就是從飛行中的鳥類得到靈感。移動的翼型會切過空氣,與周圍的空氣產生了力的作用。空氣分子——渺小不可見卻能施展強大的力量,從四面八方擠壓著翼型。翼型向前移動的時候,因為與空氣產生了交互作用而起飛。

將書本平放在桌上一隻手塞到書本下方,然後把書托起來。你的手在書下施展的壓力,就像慢速通過翼型下方的高壓。另一方面,通過翅膀上方的空氣,移動速度較快,形成了較低的氣壓。

-----廣告,請繼續往下閱讀-----

空氣分子在機翼上的賽跑

讓我們進一步調查

問題:通過翼型上方的空氣,是否因為空氣要通過的距離較長,因此速度才會變快?

答案:根據美國的國家太空總署 (NASA) 工程師分析,機翼上方空氣的速度很快,只是為了比下方空氣更早抵達機翼後方,而不是因為距離較長。機翼上方的低壓空氣,其實速度更快!

畫出你的翼型

畫出屬於你自己的翼型,請標示以下項目

  • 高壓區
  • 低壓區
  • 快速移動的空氣
  • 慢速移動的空氣
  • 空氣流動的方向
  • 升力的方向
嘗試畫出屬於自己的翼型。圖/天才達文西的科學教室

和達文西一起賞鳥

達文西不只觀察飛行中的鳥,他也細看鳥的各種狀態,而且反覆觀看。他寫下筆一三己,問自己問題,例如:鳥類用什麼樣的方式使用翅膀?然後想辦法找出解答。以上這些行為,就是「觀察」。

當個自然觀察家吧!住家附近就可以好好賞鳥。不管你住在哪裡,都有機會走出家門,觀察鳥類百態及其飛行方式。記得帶著筆記本、鉛筆、色鉛筆與望遠鏡,可能的話帶一台相機,現在就抽出時間邁向戶外吧!

-----廣告,請繼續往下閱讀-----

你的觀察記錄將充滿獨一無二的個人風格。看到小鳥,先用肉眼觀察。接著,以素描記錄觀察到的現象:畫出鳥類的輪廓,有沒有值得注意的花紋或樣式?先畫下外形,然後加上顏色:鳥喙是什麼顏色?腳呢?也花點精力注意體型大小:和其他鳥類相較,有多大或多小呢?有沒有攝食?歌聲或叫聲怎麼描述呢?鳥類如何起飛?如何降落?鳥類會順風起飛嗎?其他數據、記錄地點、天氣與賞鳥的時段,都要記錄下來。

用相機記錄身旁觀察到的現象。圖/Pixabay

以飛機工程師的方式來思考!

用另一種角度來看翼型。機翼後緣窄窄的後翼往上或往下,會有怎樣的效果呢?飛機工程師設計噴射機的時候,讓機翼的後緣可以伸展或彎折,透過這樣的方式讓空氣分子流動,達成特殊目的。如下圖所示請利用本小節的訊息,預測這樣設計的目的,並把假說寫在筆記本裡。

機翼不同構型讓空氣分子流動,達成特殊目的。圖/天才達文西的科學教室

下圖是根據達文西的設計而重建的機械翅膀。翅膀的形狀不像翼型,但是從喇叭似的形狀看來,功能就是壓下空氣分子,以產生向上的升力。這款翅膀有沒有讓你想起某種哺乳動物呢?

根據達文西的設計而重建的機械翅膀。圖/天才達文西的科學教室
根據達文西的設計而重建的機械翅膀很像哺乳動物蝙蝠。圖/天才達文西的科學教室

一起動手玩:創造一個翼型

實驗材料:影印紙、膠帶、30 公分長的直尺、鉛筆(最好是六角鉛筆)、吹風機

實驗步驟

  1. 輕輕彎折紙張,以垂直方向對摺。這時紙張會有淺淺的摺線,並且出現翼型般的曲面。
  2. 把紙張轉成水平方向,曲面朝下。將上半張紙的邊緣往後移 1.27 公分,用膠帶固定。
  3. 把直尺伸到紙張底下,在 5 公分處用膠帶把尺和紙黏在一起;紙張的邊緣也要和直尺黏合。
步驟 1-3 的操作示範。圖/天才達文西的科學教室

4. 把鉛筆放在距離直尺 12.7 公分處,和直尺垂直擺放,並以膠帶黏和。

步驟 4 的操作示範。圖/天才達文西的科學教室

5. 將吹風機設定最小風量模式,待會對著翼型的吹端吹。你認為吹風機啟動後,會發生怎樣的現象?請先寫出假說。

-----廣告,請繼續往下閱讀-----

6. 現在測試你的實驗設計與假說。找個夥伴握住鉛筆兩端,翼型曲面朝向你。這時再啟動吹風機的小風量模式,直尺會怎樣?你感到翼型的升力了嗎?

步驟 5-6 的操作示範。圖/天才達文西的科學教室

實驗背後的科學

如同你所認知,通過翼型上方的空氣,移動的速度比翼型下方的空氣快。翼型下方的空氣分子在較高的壓力下受到擠壓。氣壓較高的空氣分子,向上推擠。翼型下方的高壓及上方的低壓,組合起來造成了升力!

——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

快樂文化
5 篇文章 ・ 1 位粉絲

0

0
0

文字

分享

0
0
0
一直待在家快悶壞啦!嚴格的防疫管制,什麼時候才能放鬆?
寒波_96
・2020/04/29 ・1804字 ・閱讀時間約 3 分鐘 ・SR值 562 ・九年級

-----廣告,請繼續往下閱讀-----

COVID-19(武漢肺炎、新冠肺炎)肆虐全球,沒有疫苗之下,各國都實施停航、停班、禁止出門等策略對抗疾病。好消息是,種種防疫措施確實有效,舒緩了疫情的嚴重程度,然而大眾生活也受到影響,疫情輕微的地方如台灣影響較小,災情嚴重的地方如武漢、倫巴底、紐約,卻是天翻地覆。

疫情趨緩後,似乎可以放鬆管制,可是什麼時候該放鬆卻是大學問,假如時機未到卻貿然行事,前面的努力與損失就白費了。

疫情趨緩是否就可放鬆社交隔離?圖/pixel

在台灣這種病例很少的國家,還有將病毒徹底封鎖的一絲可能。但是義大利、西班牙、美國等感染普遍的國家,在沒有疫苗的狀況下,要完全消滅病毒非常困難,不切實際。疫情嚴重的地區,一旦將疫情控制到一個程度,就必需適時放鬆管制,以免副作用大到弊大於利。

-----廣告,請繼續往下閱讀-----

傳染病有個數據叫作「基本傳染數 (R0)」,意思是在沒有防疫措施下,一個人感染後,平均會再傳染給幾個人。而「實際傳染數(R)」則是人為介入後,能再傳給幾個人。疫情至今應該不少人已經知道,實際傳染數超過 1 疫情就會擴大,至少不會減緩;實際傳染數不到 1,疫情則會漸漸退散。

奧地利的疫情感染曲線,當實際傳染數降低到 1 以下,可以考慮放鬆管制。圖/Kai Kupferschmidt@twitter

什麼時候可以放鬆管制?一派學者建議,先用嚴厲的措施把實際傳染數壓低到 1 左右,此時一人感染只會再傳給一人;這時感染人數是已知的,醫療體系也足以負荷,接著就能放鬆管制,讓實際傳染數維持在 1,如此也許能保持

防疫與生活的平衡。

有人或許會質疑,除惡務盡,為什麼要跟病毒妥協?問題在於防疫要付出代價。以深圳的調查為例,只有幾百感染者與上千接觸者的狀況下,靠著監控與隔離,可以將實際傳染數壓低到 0.4,一段時間後徹底終結疫情。

-----廣告,請繼續往下閱讀-----

可是當疫情規模擴大到幾十、幾百萬人的地區,上千萬、上億人的國家以後,要維持一樣的防疫強度,需要投入多少資源,才能維持社會不至於崩潰?

防疫是為了救人,假如防到弊大於利,卻是本末倒置。

資訊有限下,調整防疫管制的輕重,彷彿走在鋼索之上。必需根據監控、檢測取得資訊,再以模型估計,儘量掌握目前疫情的狀況,才能做出當下最適合的選擇。

資訊有限下,調整防疫管制的輕重,彷彿走在鋼索之上。圖/GIPHY

荷蘭的科學家 Jacco Wallinga 在 2004 年時提出一套方法,現在已經被普遍應用。基本概念是,目前偵測到的感染者,一定是前幾天被傳染,所以可以由現在的數字,回推到前幾天的狀況,然後短暫延伸,預測前幾天之後的未來——也就是現在的疫情狀況。

-----廣告,請繼續往下閱讀-----

英國的疫情感染曲線,實際傳染數雖然有下降,仍然超過 1,此時防疫措施不宜放鬆。圖/Kai Kupferschmidt@twitter

還有一項影響因素是免疫力。愈多人免疫,疾病的傳播愈困難,若超過一定比例的人免疫,達到「群體免疫」,就能大幅減緩疫情。不過對於武漢肺炎了解仍然不多,這部分目前暫時缺乏實用價值。

最重要的是,防疫措施必需根據現狀,隨時調整。

例如疫情初期防堵有成的新加坡,一直採取相對寬鬆的防疫措施;前幾天感染人數大增,充滿來路不明的本土社區傳染源後,隨即加強管制。客觀看來,新加坡現在防疫的管制強度,和疫情嚴重的紐約、倫敦已經沒有什麼不同。

這次疫情是全人類的戰爭,目前還在持續。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1007 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。