重於空氣的航空器最直接的概念就是在人的身上裝個翅膀,振翅迎向未知的天空, 西方伊卡爾斯(Icarus)神話及中國工匠始祖魯班傳奇中均曾出現。實際上,受限於骨架的結構,僅憑人力是無法模仿出鳥類利用強大 Y 型胸骨拍翼振翅所同時產生的渦流升力(vortex lift)與推力,再加上鳥類飛行時的空氣動力原理與飛機並不全然相似。然而這種稱為拍翼(flapping wing)或撲翼機(ornithopter)的概念,從遠古傳說到文藝復興時期的達文西(Leonardo da Vinci)都深受其影響,現今世界各地不斷舉辦的鳥人大賽,可以說是人類對此慾念的強烈執著。
1799 年,來自英國約克夏郡的凱利爵士(Sir George Cayley)突破了傳統觀念, 意識到飛行的秘密不在於鳥類如何拍打翅膀,而在於鳥類如何不動翅膀而滑翔。當時的學術界崇尚理性實證,他也在自家的實驗室裡建立了旋轉臂式的迴旋儀,用實驗數據證明了平板翼型(airfoil)上、下表面的壓力差可以產生升力,而升力又與面積、攻角以及速度的平方成正比。他同時也是第一個提出利用機尾的水平尾翼和垂直尾翼來增加飛機的安控能力想法的人;至於推力顯然已無法由機翼獲得,需要另行安排動力裝置。 他在晚年時製作了一具機翼固定、尾端以接頭安裝一個可以活動尾翼的滑翔機並試飛成功,形塑了現代飛機的基本構型。
這具風箏配有纜線,在空中時可稍微扭轉翼尖;在主翼前端還裝有稱為升降舵的小型機翼,用以穩定機身的俯仰動作。試驗效果十分良好,也奠定了日後「飛行者」系列飛機的基本外型。值得注意的是,基於縱向安定性的考量,現代飛機多半把升降舵置於機尾而不是機頭(包括萊特兄弟後期生產的 Type B「飛行者」也從善如流把升降舵移置機尾);而基於製作與效率,副翼(aileron) 也不是採用萊特兄弟扭轉翼尖的方法,而是來自其他飛行先驅——諸如費爾曼(Henri Farman)或寇蒂斯(Glenn H. Curtiss)使用的機構。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。