Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

防曬傷?防曬黑?一次搞懂為什麼防曬這麼重要── 紫外線大解析與防曬三步驟

MedPartner_96
・2018/07/13 ・3562字 ・閱讀時間約 7 分鐘 ・SR值 484 ・五年級

「歲月催人老,日曬最靠腰」這句話 MedPartner 團隊已經不知道說過幾次了,但到底日曬這件事情到底影響有多大,好像沒提出一個明確的例子,大家就很難理解。

其實早在 2012 年新英格蘭醫學雜誌的一篇個案報告,這位美國大叔就用自己的臉親自為我們做了長達 28 年的人體實驗了。

圖/Unilateral Dermatoheliosis Jennifer R.S. Gordon, M.D., and Joaquin C. Brieva, M.D.
N Engl J Med 2012; 366:e25

照片中這位大叔是名貨車駕駛,每趟他出門送貨的時候,陽光中的 UVA 穿過貨車的玻璃,照射在他的左臉。美國跟台灣一樣都是左駕,所以左邊車窗離臉很近,但右邊相對就遠很多。從送貨第三年開始,他就開始出現左臉單側無症狀的皮膚過度角化、皺紋、開放性粉刺,並在一些區域出現像是囊腫的粉刺,這都是典型過度曝曬產生的症狀。

大家應該都知道防曬的重要性。但我們希望透過這篇文章,徹底讓你一次搞懂到底為什麼防曬會這麼重要。廢話不多說,我們開始上課囉!

防曬黑 vs 防曬傷──平平都是紫外線, UVA、UVB、UVC 大不同

多數人都知道,防曬主要是要防止陽光中的紫外線導致皮膚傷害。但如果你只知道到這個程度,那你大概沒辦法做好防曬。地球上的紫外線基本上來自太陽,而太陽是一個巨大、高溫的星體,會發射出各種不同波長的輻射線,如果分析起來,會是一個連續的光譜。

-----廣告,請繼續往下閱讀-----

人的眼睛可以看到的波長是有限制的,因此你能看到的紅、橙、黃、綠、藍、靛、紫這個範圍的光線,被稱為「可見光」。而波長超過紅光的被稱為「紅外線」,波長短於紫光的被稱為「紫外線」,這兩者都是「不可見光」。而波長越短的輻射線,能量就越強,對人體的傷害也就越大。因此紅外線對人體產生不了什麼傷害,我們防曬的重點主要落在波長短但能量較強的紫外線範圍。

所以我們要把重點放在紫外線 (Ultraviolet, UV)再來仔細討論!

紫外線依照波長的範圍,又被分為 UVAUVBUVC 三種。波長越長,穿透力就越強,因此在一般的狀況下,波長最短的UVC幾乎是全部被大氣層擋住(感恩大氣層,讚嘆大氣層),而大約有 5% 的 UVB 會到達地表,但高達 95% 的 UVA 都能直接到達地表。所以防曬產品的設計,都是針對 UVB 跟 UVA 為主,很少聽到有人在談防 UVC 的。

UVB 的波長較短,穿透力較低,傷害主要在表皮層,但能量較強。因此容易造成曬紅、曬傷,而長期累積的能量大,也可能造成皮膚癌。但因為 UVB 的穿透力較低,防護的難度比 UVA 低。至於有關如何早期發現皮膚癌,請大家參考這篇文章

-----廣告,請繼續往下閱讀-----

UVA 的波長較長,穿透力較高,依照波長又分成長波 UVA 跟短波 UVA,其中長波 UVA 的波長更長,傷害可到達真皮層,但能量較低,因此會導致曬黑與老化。而短波 UVA 的波長較短,可抵達表皮較深處。雖然 UVA 能量低,但因為到達地表的量大,因此累積起來,波長越長的 UVA 累積的吸收量還是比較大喔。有關曬黑的完整機制,請大家務必要回去複習一下美白全攻略喔。紫外線會讓皮膚產生自由基,也會產生一些蛋白酵素的活化,會引起膠原蛋白跟彈性纖維的分解,進而出現皮膚老化的現象,例如皮膚變薄、失去彈性、形成皺紋等問題。

 

看到這,大家應該已經清楚 UVA 跟 UVB 的差別,兩者穿透的能力不同,造成的影響也不同,所以防曬的時候,應該要搞清楚自己的目標到底是什麼?如果你根本不怕黑、曬老,只怕曬傷的話,那把降低 UVB 的傷害就沒問題了。如果你擔心的是曬黑、曬老的話,那就要更全面降低 UVA 的暴露。

但是 UVA 的防堵,其實非常困難。剛才已經有講過,波長越長,穿透能力就越強,因此長波的 UVA 基本上是很難阻擋的。因為它能量低,所以即使你暴露在大量 UVA 下,也不會有像 UVB 暴露那種熱熱燙燙的感受。UVA 也很難被雲層、窗戶、汽車的擋風玻璃所阻擋。更麻煩的是,UVA 從日出到日落其實波動不會太大,即使是隨著季節變化,冬天跟夏天的 UVA 強度也相差不大。長波的 UVA 簡直就是一年四季、如影隨形,跟背後靈一樣死纏著你,很難躲得掉啊!

大家可以回想文章一開始的這位大叔,其實他的症狀,主要就是 UVA 的傷害。車窗幫他擋下了多數的 UVB 所以他沒什麼被曬傷的感覺,也不覺得有什麼問題。但累積了 28 年的 UVA 暴露,就成了大家看到的這個樣子了。

-----廣告,請繼續往下閱讀-----
UVB 造成曬紅曬傷, UVA 造成曬黑曬老。防曬的時候,要搞清楚自己的目標!圖/chezbeate @pixabay

要如何完整防曬?防曬口訣 ABC 不能忘

如果想要完整防曬,原則就是「讓皮膚接觸的各式紫外線越少越好」。防曬的原則跟考試想拿分數一樣,要把最多的精力專注在大方向上,而不是枝微末節。這邊提供一個醫學界防曬的通用口訣給大家。

A(Avoid) :避免在上午 10 點到下午 2 點間進行超過 20 分鐘的戶外活動。如果是夏天,可能要視情況延後到下午 3 點。這段時間是紫外線在一天中最強的時候,如果你在這時間還想在外面趴趴走,就千萬別說你想防曬啦~這種量級的紫外線真的很難防守啊!

B(Block):外出要塗抹防曬產品,依所處環境選擇合適的防曬係數,一般以 SPF20~35 間即足夠,建議選擇 SPF30~35 為佳,並謹守 2 小時補擦一次的基本原則。

C(Cover):出門曝曬在陽光下時,應為肌膚提供適當遮蔽物。例如如撐陽傘、戴帽子、戴太陽眼鏡、或是穿著長袖衣物等,加強物理性防曬。

-----廣告,請繼續往下閱讀-----

這裡有張有趣的圖片,也分享給大家看看。

澳洲是個陽光超強的地方,白種人又比較容易得皮膚癌,澳洲政府就用這張圖對國民宣導應該要這樣做好防曬。這張文宣強調的就是:穿長袖衣物、使用 SPF 30 以上的防曬產品、戴帽子、儘量走在陰影處,並且記得戴太陽眼鏡。但內行人就會看出這裡有個有趣的點:澳洲政府不太在意你變黑或變老,主要是擔心你曬傷產生身體問題。這一系列的防曬,主要都是在防 UVB 造成的皮膚疾病為主,特別是皮膚癌,還有視力問題。這非常有道理啊!以政府的角度來說,民眾做好防曬,之後的醫療支出才有機會下降,至於你是不是曬黑曬老,政府是沒打算特別想管啦。當然 UVA 還是會有導致疾病的問題,不可不慎喔!

UVA、UVB、UVC 以及防曬 ABC 的快速重點整理

另外防曬的 ABC 口訣別忘記:

A(Avoid) :避免在上午十點到下午兩點時間進行超過20分鐘的戶外活動。

-----廣告,請繼續往下閱讀-----

B(Block):外出要塗抹防曬產品,依所處環境選擇合適的防曬係數,一般以 SPF20~35 間即足夠,建議選擇 SPF30~35 為佳,並謹守 2 小時補擦一次的基本原則。(這只是原則,要以活動的習慣來做調整)

C(Cover):出門曝曬在陽光下時,應為肌膚提供適當遮蔽物。例如如撐陽傘、戴帽子、戴太陽眼鏡、或是穿著長袖衣物等,加強物理性防曬。

像這位可愛的阿姨物理性防曬就做的很足。 圖/flickr

如果覺得這篇文章對你有幫助,請別忘了給我們一個讚,讓我們更有動力繼續整理最新的知識分享給大家,也別忘了分享給朋友喔!

Reference

特別感謝:台灣藥妝品研習專業小組所有醫師

-----廣告,請繼續往下閱讀-----

延伸閱讀





-----廣告,請繼續往下閱讀-----
文章難易度
MedPartner_96
49 篇文章 ・ 18 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

17
4

文字

分享

0
17
4
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
231 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
雀斑為何只在陽光下現形?揭開「太陽之吻」的秘密
F 編_96
・2024/12/23 ・2340字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

在夏日豔陽下,許多人臉上、肩膀上,甚至手臂上,會冒出一點點咖啡色小斑點,人們常親切地稱它們為「太陽之吻」。這些雀斑(freckles)在日光充足的季節裡愈顯活躍,等到秋冬時節太陽不再那麼刺眼時,顏色又逐漸淡去,甚至幾乎消失不見。

為什麼雀斑會選擇在陽光猛烈時現形?其實,雀斑的成因不僅與紫外線(UV)有關,也與我們皮膚深層的色素細胞、基因遺傳以及日常防曬觀念息息相關。

雀斑是什麼?

所謂「雀斑」,在皮膚科領域中比較常被稱為「日曬斑」或「褐斑」的一種,但嚴格來說,依據皮膚科專家的分類,可將「雀斑」區分為兩大類:

  1. 小雀斑(Ephelides):一般人在談論「雀斑」時,多半指的就是這類。它們常呈現為細小且淺棕色,通常散落於臉部、肩膀、手臂等長期曝曬陽光的部位,夏天時較為明顯,冬天會逐漸淡化。
  2. 曬斑型老人斑(Solar Lentigines):又稱「日光性黑斑」或「年齡斑」,形狀可能較大,顏色較深,常分布於長時間曝曬的肌膚區域,如臉部、手背等。它們不會像小雀斑那樣隨季節改變顏色或變淡,而是隨著年齡與累積日曬逐漸加深。

紫外線如何誘發雀斑?

皮膚中的色素,主要由名為「黑色素細胞」(melanocytes)的細胞製造,這些細胞負責產生「黑色素」(melanin)。在平時的皮膚狀態下,黑色素會平均分布在表皮中,讓每個人擁有自己獨特的膚色。當皮膚受到紫外線刺激時,為了保護深層細胞免於 UV 傷害,黑色素細胞會增加黑色素的產量,試圖將危險的 UV 射線「散射」出去,避免它穿透至更深層皮膚,造成 DNA 損傷。

-----廣告,請繼續往下閱讀-----

雀斑之所以出現,便是由於某些區域的黑色素細胞比其他區域更為活躍,在相同的日曬條件下產生了相對大量的黑色素,並集中在特定區塊,於是就形成我們肉眼可見的「小斑點」。

雀斑由黑色素細胞局部活躍產生,黑色素集中形成肉眼可見的小斑點。圖/envato

為什麼夏天雀斑特別明顯?

夏天日照時間長、紫外線指數通常也偏高,使黑色素細胞生產更多色素,故那些先天對紫外線較敏感、或具遺傳傾向產生雀斑的人,臉上就更容易冒出小斑點。等到秋冬日照減少、紫外線較弱時,這些黑色素細胞的活躍度也會跟著下降,皮膚的代謝作用會逐漸將多餘色素淡化,於是原本在夏天特別明顯的雀斑又慢慢變得不顯眼,甚至接近消失。

然而,並不是所有雀斑都會隨季節消長。同樣受到紫外線影響的「日曬型老人斑(Solar Lentigines)」,就不會像小雀斑那樣在冬天退色,因為它是長期日曬累積造成的色素沉澱,隨著年紀增長與皮膚細胞多次受紫外線傷害,這些斑點往往會持續存在或顏色更加深。

遺傳與膚質的影響

事實上,並非每個人都會長雀斑。它在一定程度上和基因有關。膚色白皙且天然黑色素較少的人,更容易受到紫外線的影響,而產生或加深雀斑。尤其歐美血統者,其遺傳基因裡常見 MC1R 基因變異,導致毛髮顏色較淺、膚色偏白,也就更容易「曬出」雀斑。而亞洲人中,若父母一方有雀斑基因,也可能遺傳給下一代。

-----廣告,請繼續往下閱讀-----

「太陽之吻」與健康有關嗎?

雀斑本身是無害的,不會直接演變成皮膚癌。然而,它們的出現代表皮膚曾經受到過紫外線的刺激,若人們在相同條件下沒有做好防曬,長期累積的 UV 傷害可能導致細胞 DNA 損傷,讓皮膚老化、皺紋提早出現,甚至提高罹患皮膚癌的風險。因此,有雀斑的人不必過度擔心,但是也應該將之視為一種提醒,提醒自己需要加強日常的防曬措施。

雀斑無害,但還是要注意紫外線帶來的傷害。圖/envato

如何區分「日曬斑」與「老人斑」?

  • 日曬斑(ephelides):經常出現在皮膚較薄或常曬太陽的部位,如臉頰、鼻梁,夏天加深、冬天減淡。
  • 老人斑或曬斑(solar lentigines):較大、顏色較深,容易出現在手背、臉部。隨年齡增長、不會隨季節變淡。

如果皮膚上出現斑點且有快速變化,或顏色、形狀突變的情況,最好就醫檢查,以排除皮膚癌等風險。因為某些黑色素瘤或癌前病變,在早期也可能長得類似咖啡色斑點,必須由專業醫師進行鑑別診斷。

想要保護皮膚?防曬是關鍵

想要減少雀斑的生成或避免它們顏色變深,防曬是最有效的手段之一。無論是否有雀斑,紫外線皆會加速皮膚老化和傷害,因此建議做好以下幾點:

  1. 使用防曬產品:選擇符合自身膚質且 SPF 值足夠的防曬乳,並在外出前 15 至 20 分鐘均勻塗抹,並於戶外活動每 2 小時補塗一次。
  2. 配戴帽子與太陽眼鏡:多重物理隔離,可以更有效地保護臉部與眼周脆弱的肌膚。
  3. 善用遮陽工具:如陽傘、遮陽布等,減少直接曝曬在刺眼陽光下的時間。
  4. 避開強烈日曬時段:若時間允許,儘量在上午 10 點以前或下午 4 點以後再從事戶外活動,降低紫外線的曝曬量。

雀斑之所以容易在夏日高調現身,歸根究柢都是皮膚為了抵禦紫外線所做的「自衛行動」。面對這些「太陽之吻」,我們無需過度恐慌,因為它們本身無害;但也不該放鬆警惕,畢竟皮膚細胞受到紫外線傷害的警訊往往比想像中更容易被忽視。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
1

文字

分享

0
5
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。