Loading [MathJax]/extensions/tex2jax.js

4

11
3

文字

分享

4
11
3

在機器與人的交會之處——《再.創世》專題

再・創世 Cybernetic_96
・2021/09/08 ・6672字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/施奇廷|東海大學應用物理學系 
「羅梭的萬能機器人」(Rossum’s Universal Robots) 劇中機器人反抗人類的一幕。圖/WIKIPEDIA

起源

從 1920 年「羅梭的萬能機器人」(Rossum’s Universal Robots,通稱R.U.R.)登上舞台以來,「機器人」這個概念,一直是科幻作品中的常客。機器人「具有人的形象,而(在某些方面)具有比人類更強的能力」的設定,一直刺激著人類的想像力:能力強大卻又聽命於人類的忠實僕人;或是領悟到自己其實可以取代人類,成為下一代的地球霸主?樂觀的期待與被反噬的恐懼,向來是欣賞以機器人為主題的科幻作品的兩大樂趣。不過近十年來「人工智慧」(Artificial Intelligence)與「機器人學」(Robotics)的發展速度超乎預期,上述本來只存在於科幻作品中的兩面議題,突然變得不是那麼遙不可及。

提出「機器人學」這個名詞,並將理論系統化的,並不是工程領域的學者,而是科幻小說大師艾薩克‧艾西莫夫(Isaac Asimov),這個詞現在已經成為工程界對機器人科學的正式名稱,是一個從科幻對科技「逆輸入」的有趣案例。生於俄羅斯的艾西莫夫的本行是就科學家(專長是生物化學),曾經任教於波士頓大學醫學院,不過後來因為全力投入寫作,不再進行一般學者的教學研究工作,但是波士頓大學仍然保留他的職位。他所接受過的嚴謹科學訓練,也反映在作品中。1940 年,年方 19 歲的艾西莫夫就發表了第一篇機器人短篇小說「小機」(Robbie,收錄於短篇小說集「我‧機器人」),開啟了「機器人系列」的序幕。

法則

「人類製造的機器人結果反過來支配人類」這個命題可說是充滿「為何要搬磚頭砸自己的腳」的矛盾,因為人類絕對可以在一開始設計、製造時就預防這件事發生。不過睽諸人類科技發展的歷史,這種矛盾其實一直存在,也不斷發生,目前我們面臨的「核能科技的發展衍生的核子大戰威脅」、「高度工業化生產導致環境污染」,以及「大量使用石化燃料導致全球氣候變遷」這些問題,都是現在進行式。

不過「人類依照自己的形象打造的仿人類」又有點不同,高功能的機器「外型像人」這件事,足以引起人類的「科學怪人情結」,讓人類會對機器人的發展保持高度的戒心,在此思考下,1942 年時,艾西莫夫在他的作品中,比照「牛頓運動學三定律」的規格,揭示了「機器人三定律」:

-----廣告,請繼續往下閱讀-----

一、機器人不得傷害人類,也不能坐視人類受到傷害

二、在不違反第一法則的前提下,機器人必須保護自己的安全

三、在不違反第一與第二法則的前提下,機器人必須執行人類的命令

這三大法則是在機器人出廠時,就內建於其軟硬體內,絕對不容違反。如果讀者是「理科人」的話,大概會覺得這三大法則邏輯簡單明瞭,簡直無懈可擊,在此控制下,機器人應該可以成為人類最忠實的僕人,無須擔心他們會叛變了。

有趣的是,在艾西莫夫的機器人短篇小說中,幾乎都是在探討「會引起三大法則的缺陷、迷惑、矛盾的可能情境」,所以幾乎每篇小說都會產生一個「精神錯亂」的機器人。這些小說非常有趣,推薦喜歡「燒腦型作品」的讀者一讀。

https://giphy.com/gifs/foxhomeent-robot-will-smith-xUOwVmpPRPlosLm5vG
電影中違反三大法則的機器人。/Giphy

這個系列作品的內容其實也部分反映了人性:人也是又內建「道德基準」(moral norms),能進行邏輯思考的動物,但是即使最理性冷靜的人,也是會碰到兩難的困境,例如著名的「電車難題」:「一輛失控的列車在軌道上急馳,在軌道上有五個人即將被碾過,你剛好在鐵軌的轉軌器旁邊,只要扳動轉軌器,就可以把列車轉向另一條軌道,但是另一條軌道上有一個人,本來不會有事,因為你將列車轉軌而會被碾斃,在這個狀況下,你到底要不要將列車轉軌呢?」幾十年來這個問題引起了許多哲學以及倫理學、社會學的廣泛討論。事實上,自動駕駛汽車(除了不具有人形之外,其實也算是機器人的一種)的設計就必須把這類情境納入考量。

電車難題。自動駕駛汽車的設計就必須把這類情境納入考量,其中牽涉了哲學、倫理學以及社會學 。 圖/WIKIPEDIA

就筆者的「理科腦」來看,這些矛盾的起因是「機器人定律與人類的道德準則是定性的,而實際情境卻是定量的」。例如兩個人類同時對一個機器人下命令,而這兩個命令互相矛盾,那麼這個機器人到底要聽誰的?這時候機器人必須對下命令的兩個人做出「定量上的評價」,決定執行哪一個命令。這個結果導致「機器人可以(必須)評價人類,將人類分出等級」,之後又會衍生出更多的問題…

-----廣告,請繼續往下閱讀-----

1985 年時,在機器人系列故事四十餘年的發展之下,艾西莫夫被自己的筆下的故事逼得追加了一個「第零定律」,位階在原來的三定律之上:「機器人不得傷害『整體人類』,或坐視『整體人類』受到傷害。」,這下子定律的規格從「牛頓三定律」變成了「熱力學的零+三定律」了,不愧是正統派科學家出身!這個第零定律跟之前一樣,從邏輯上看起來也很合理,但是這又造成機器人必須評價「整體人類」的福祉是什麼,由於第零定律凌駕於第一定律之上,因此視情況機器人是可以為了避免整體人類受到傷害,而去傷害甚至殺死個人的,最後可能會演變成「機器人為了整體人類好而接管、控制人類社會」的反烏托邦結果。

不過或許是因為「機器人叛變」這個展開實在太過顯而易見,而且因為可以塞進許多動作場面而成為影視作品愛用的題材,艾西莫夫的機器人作品中對這方面反倒是著墨不多,而是將關心的焦點放在「機器人是否能在三定律的規範下,活出自己的人格?」這個主題的代表作,就是獲得 1976 年「雨果獎」與「星雲獎」雙料大獎的中篇小說「雙百人」,後來在 1992 年由令一位作家羅伯特‧席維伯格(Robert Silverberg)擴充成長篇小說「正子人」;這個故事也在 1999 年改編為電影「變人」,由已故的喜劇泰斗羅賓‧威廉斯(Robin Williams)主演。

說實在的,想要瞭解「機器 → 人形機器 → 機器人 → 人」的演進與思辯,而又沒有很多時間與耐性的讀者,看這一本就夠了。

1999 年的科幻電影《變人》,由作家羅伯特‧席維伯格的長篇小說「正子人」改編而成。

分流

前面花了相當的篇幅講了艾西莫夫的機器人觀,除了這個「大師典範之外」,其實幾十年的科幻與娛樂文化演變下來,機器人也了更多的樣貌。

-----廣告,請繼續往下閱讀-----

好萊塢電影與日本動漫畫,是目前全球影視娛樂的兩大主流,當然兩者還是有一段差距,好萊塢挾其資金、人才、技術的實力,最為強勢;不過「小本經營」的日本御宅文化,在全世界的影響力也逐年提升,對好萊塢電影也產生了不小的影響。它們對於機器人這個主題的處理,有很大的不同。以下分成不同的機器人類型討論,不過要先說明的是,以下的分類有些是好萊塢電影擅長的題材,有些則是日本動漫畫的偏好,但是其實並沒有這麼涇渭分明,大部分在兩邊都有出現,只是多寡有別。

一、近未來,覺醒的機器人,成為人類之敵——好萊塢電影的機器人,跟艾西莫夫的機器人類似,是外型、尺寸都比照人類,並且具有不同程度的人工智慧。不過如前所述,好萊塢電影中的機器人有許多都是扮演「人類之敵」的大反派,完全不受艾西莫夫「機器人三定律」的節制,最經典的例子就是「魔鬼終結者」系列,劇中的機器人存在的目的就是用來追殺人類——可說是把「機器人三定律」完全反過來看就行了。這些機器人的背後是由一個名為「天網」的人工智慧,也可以說是個不具人形的機器人,本來是美國研發的國防電腦系統,後來這個系統產生自我意識,並且判斷人類才是「世界最大的威脅」,於是就發動核戰毀滅人類,並且持續掃蕩殘存的人類反抗軍,並且派遣機器人穿越時間回到過去殺害反抗軍領袖的母親以斬草除根。

相對於艾西莫夫小說中以「機器人三定律」來節制機器人的能力,以消除人們的「科學怪人情結」,努力讓人類社會接受機器人;「魔鬼終結者」系列是反過來喚起觀眾的「科學怪人情結」,再加上「末日電影」的背景設定,來營造危機感與戲劇性,然後在人類與機器人的對立下順理成章的大打出手,「拳腳與槍砲齊飛,鮮血共煙硝一色」,讓本來是「低成本 B 級動作片」的「魔鬼終結者」成為娛樂性與思想性兼具的成功作品。就這個視角而言,「駭客任務」中的架構與設定,以及成功的要素也頗有共同之處。

終結者 GIF
魔鬼終結者喚起觀眾的「科學怪人情結」,成為娛樂性與思想性兼具的成功作品。 圖/Giphy

二、遙遠的未來,機器人已經融入人類社會,共同面對更廣闊的星際世界——上述這種「人類與機器人的衝突與生死戰」的背景通常發生於「近未來」,故事舞台跟現代有相當程度的重疊,機器人進入生活的正面與負面效應,都比較能引起觀眾的代入感。如果是以「遙遠的未來」為背景,機器人與人類之間的「磨合陣痛期」已經過去,像是兩大名門「星際大戰」與「星際爭霸戰」,人類的足跡已經遍佈銀河系,見識過各種稀奇古怪的外星生命體,機器人也早就已經成為人類好伙伴,甚至被視為跟人類同等的存在了。

-----廣告,請繼續往下閱讀-----

三、機器人是人類肉體的延伸,力量的放大器——另一方面,日本動漫畫作品中的機器人,除了早期的「原子小金剛」是走「真人的大小與外貌,且具有人工智慧」的路線以外,主流是象徵「人類力量的延伸」的「巨大機器人」類型。這種機器人不具有人工智慧,而是搭載操作界面與作業系統,由人類駕駛員來操作,相當於扮演其大腦的角色。以早期的名作「無敵鐵金剛」而言,所標舉的主題是「如果人類透過機器取得了巨大的力量,將會成為神?還是成為惡魔?」,這類作品有別於西方「機器如何變成人」,而是「人類與機器合為一體」的概念。

機器人是吸引目標觀眾目光的賣點,也是贊助或出資廠商販賣模型玩具的獲利神器,導致許多巨大機器人動畫作品一味強調機器人造型帥氣而不注重劇情內涵,被譏為「為了販賣玩具所製作的 30 分鐘廣告片」,不過由於出資者只要求「機器人玩具賣得好」,對於內容不太有興趣干涉,反而讓創作者有揮灑的空間,出現了「長濱忠夫三部曲」、「機動戰士鋼彈」等名作。1995 年的「新世紀福音戰士」,把前述「人類與機器合為一體」的概念推到極致,駕駛員是透過神經系統直接與機器人(稱為 Evangelion,簡稱 EVA )「同調」連結,以精神力取代操縱桿與按鈕,直接操控 EVA——不過其實 EVA 與其說是機器人,「生化」味更重一些,劇中還曾出現駕駛員與 EVA 機體「完全融合」的情節。

https://giphy.com/gifs/evangelion-ZKyaPBAfBZ2c8
EVA 與其說是機器人,「生化」味更重一些,劇中還曾出現駕駛員與 EVA 機體「完全融合」的情節。圖/Giphy

四、機械化的人類——人與機器的關係,除了「機器→人形機器→機器人→人」這條路線外,也有反方向的路徑:由於疾病或受傷而失去部分身體功能的人,利用科技的力量改造身體,恢復正常的功能,甚至更為強大,這種被部分改造的人類稱為「改造人 Cyborg」(cybernetic organism),結合了「模控學」與「有機體」兩個字,也有人翻譯為「生化電子人」、「半機械人」,後來乾脆直接音譯為「賽伯格」。其實許多現實世界的人類已經多多少少變成改造人了:義肢、人工水晶體、心律調節器、人工關節等等,人們已經普遍可以接受為了維持身體機能以侵入性的方式改造部分器官,未來可以預見改造的範圍與精密程度必定會逐漸提升。

在這個「人體改造」的延長線上,我們可以看到像「機器戰警」中,殉職的員警被改造並且復活來執行正義,「鋼鐵人」受傷後在自己的胸腔裝了一個反應爐,成為裝甲動力服的能量來源;日系作品方面,有「無敵金剛 009」(後來改名為「人造人 009」,少了一股中二的氣勢)、「假面騎士系列」(真人演出的特攝片),這些作品中,並非前述因為疾病或受傷而修補人體,而是為了培養「征服世界用的超級士兵」,而將人體改造成具有超越一般人能力的戰鬥道具。

-----廣告,請繼續往下閱讀-----

與「機器人覺醒為人類、或自覺為超越人類的存在」的方向相反,在「改造人」這條線上會出現的問題則是「當人類持續被改造,被機械取代的部位越來越多,會不會因此變成『不是人類』?這個轉變的界線何在?」也是非常值得探討的問題,也讓「改造人」這類的作品更具有思想上的深度。

近年來日本動漫畫與好萊塢合流的作品逐漸增加,「攻殼機動隊」與「戰鬥天使艾莉塔」是其中翹楚,都是以「改造人與人類的分界線」,以日本原創的動漫畫作品為主題,結合好萊塢的資金與技術的大製作電影,都獲得了相當程度的成功。

交會

本文以包含小說、電影、動漫畫等科幻作品的角度來看「機器人與人」之間的關係。雖然不是從真實世界的科學與技術來進行嚴謹的探討,不過在「機器人與人」這個主題上,科技與科幻的發展路徑其實亦步亦趨、互為因果:如同艾西莫夫的「機器人學」與「機器人三定律」對真實世界的機器人科技有極大的影響一般,科幻的想像有可能成為引導科技發展的路標;相對的,科技的發展當然也會墊高科幻作品的根基。

前文我們看過了幾種「機器人與人」的類型作品:從機器人變成人、機器人與人共存、機器人與人合體、從人變成機器人。這幾種模式,各自以不同的視角來刺激我們思考「人到底是什麼」這個問題。從數十年來這個主題的科幻作品的發展看來,不論是從哪個角度切入,最後都指向一個共同的交會點:人類的大腦。

-----廣告,請繼續往下閱讀-----
數十年來這個主題的科幻作品的發展看來,不論是從哪個角度切入,最後都指向一個共同的交會點:人類的大腦。 圖/Pixabay

「正子人」中的機器人主角「安德魯‧馬丁」要爭取在法律上被認可為「人」,其起點是他的「正子腦」產生了類似人腦的感情、創造力、以及自我意識的自覺,在其兩百年的生涯中,他的「鉑銥合金正子腦」的運作模式與人腦越來越接近,應該可以通過任何像「圖靈測試」這種「能分辨人腦與電腦差別」的考驗。而他克服爭取成為「人」的最後阻礙的方式是:改造他那相對於人腦幾乎算是不朽的正子腦,讓它像人腦般會逐漸老化與死亡,終於取得了「人」的資格。

另一方面,「從人變成機器人」的這條路上,也是以「大腦是不是原裝貨」來作為人類與機械的分界點。身上的器官怎麼更換都沒關係,但是這個人的「自我」(identity)只存在於大腦的神經元之間的連結以及在內部儲存以及傳送的資訊中,如果大腦被換掉、或是內部的資訊消失了,這個人也將不再存在。更激進的說法是,連大腦的「硬體」都不重要,只有內含的資訊才是「人的本體」,所以只要能夠把腦內的資訊保留、複製下來,人將可以成為不朽的存在,就像「攻殼機動隊」的主角草薙素子,拋棄了已經多次改造的肉身,以及還是「原裝」的大腦,將腦內資訊轉進網路中,只要這個網路仍在運作,這組來自草薙素子大腦的資訊仍存在於這個網路中,她就相當於取得了永生。

回到現實世界,「人工智慧」與「腦科學」正好也是目前最熱門、進展也最快的科技領域,前者致力於「讓機器除了強大的計算與記憶能力之外,還能像人腦一樣能進行複雜的思考」,後者則是要「瞭解大腦如何學習、記憶、創造,以及人類的自我意識從何而來」,這兩個領域發展的進程與細節跟科幻作品當然不會一模一樣,但是在大方向上,「科學」與「科幻」實在有驚人的相似之處,最後兩個領域也有可能交會在同一點上。

看看社群網站的自動審查機制,以及電子商務網站的推薦系統,極權國家用來監控人民的社會科技體系,「不具人形的機器人」正逐漸接管我們的生活。也許在我們的有生之年,就可以看到這些科幻名作中的情節在現實世界中發生,至於人與機器人之間的關係,是對抗、共生、還是融合?人類社會未來的流向,仍然掌握在人類手上嗎?再不嚴肅思考這個問題,或許很快就會來不及了。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
再・創世 Cybernetic_96
11 篇文章 ・ 29 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
1

文字

分享

1
1
1
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3646 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook