0

1
0

文字

分享

0
1
0

橫跨科學與人文藝術的天才──達文西誕辰│科學史上的今天:4/15

張瑞棋_96
・2015/04/15 ・1083字 ・閱讀時間約 2 分鐘 ・SR值 516 ・六年級

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

9
1

文字

分享

1
9
1
五花八「門」——各種肛門的特異功能
阿咏_96
・2021/07/24 ・2618字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

一般說到肛門,我們常常會用其他詞來表示,例如「後庭」、「菊花」等等,好像是一個「不可說」的部位一樣,平常和別人聊天時,萬一有人脫口而出它的名字,當下就會想立馬播放「最怕~空氣突然安靜~」尷尬的氣氛幾乎可以讓人窒息。

但很多人不知道的是,「肛門」在演化上有很重要的意義,也跟我們的起源有很大的關係。平常不好提沒關係,我們今天就要來大談特談肛門的厲害!

一切才「肛」開始

看到標題先別驚訝,這個故事要從胚胎時期講起,最早期的胚胎稱為「囊胚 (Blastula) 」後來發育成「原腸胚」時,會形成胚孔 (Blastopore) ,而這個開口之後發育成我們的肛門,因此人類屬於「後口動物 (Deuterostome)」,也就是嘴巴是後來形成的,並非由胚孔發育而來,相反的,胚孔之後發育成嘴巴的,稱為「原口動物 (Protostomia)」;而後口動物除了我們脊索動物門(Chordata) 之外,也包含棘皮動物門 (Echinodermata) ,例如海星,以及有「超強肛門」的海參(至於牠的肛門到底有多厲害,看到最後一段就知道了)。

原口動物與後口動物胚胎發育過程的差異。圖/ Wikimedia common

有肛門?沒肛門?

以人類來說,我們將食物從嘴巴送入體內,中間經過消化系統的處理,最後食物殘渣從肛門排出體外;那現在想像一下,如果消化道的尾端沒有像肛門這樣的開口,殘留的食物便會逆流而上,從原本進食的地方排出去⋯⋯沒錯!從人類的角度來看或許會覺得怪怪的,但數億年前,許多在海裡生活的生物都是只有單一開口,由同一個地方進食、排出殘渣,在現存的生物中,例如海葵、珊瑚等,牠們在進食時一次吃一團食物,然後再從同一個孔排出去,也因此這些生物的消化囊就像是假日大賣場的單道停車場,因為空間有限,必須一進一出才能再進,攝取進體內的量便有一定的限制。

-----廣告,請繼續往下閱讀-----
海葵的肛門。圖 / flickr

肛門的出現,就像是把停車場變成了高速公路,有了交流道之後,生物不需要等上一餐排出去才能繼續吃,而能夠一餐接著一餐,而且消化道變長之後,逐漸分隔成不同區域,各自具有獨特的微生物相,也形成能吸收不同的營養,讓生物能夠從攝食中獲取養份的效率提高,與生物的體型變大、變長以及移動方式的改變也有密切的關係。

酷肛門!

在了解肛門在生物體中的重要程度後,如果你以為肛門只能把食物殘渣排出去,那就太小看它了~接著我們來聊聊世界上百百款的肛門吧!

首先,有些動物的消化道、生殖器和泌尿道的末端合併成一個開口,稱為泄殖腔(cloaca) ,能夠排出糞便、尿液、卵子或精子,像是鳥類、兩棲爬蟲類都有這樣的構造,泄殖腔有時候很方便,譬如雌鳥在和不喜歡的雄鳥交配的時候,就能夠輕鬆地將精子排出去。至於為什麼有些動物的生殖孔和肛門是分開的,但位置卻很接近,這又是另一個故事了。

鳥類的泄殖腔。圖 / Judi Lapsley Miller 

除了泄殖腔外,前面提到海參有「最強肛門」,這不是亂說的,因為海參的肛門不只是一個排廢物的出口,還能作為牠的第二張嘴,可以吞食一些藻類,金價ㄟ「後庭進食」就是海參啦!除此之外,海參消化道的末端旁分出一對樹枝狀的器官,稱為呼吸樹 (respiration tree),可以透過肛門肌肉收縮,將海水吸進體內,藉由吸收海水中的氧氣進行氣體交換,也就是用肛門呼吸(屁之呼吸啾4尼啦~)。

-----廣告,請繼續往下閱讀-----

如果你覺得肛門可以進食和呼吸還不夠看,那接著更猛的是——肛門還可以發動攻擊。海參體內有一個防禦器官稱為「居為業小管 (Cuverian tubules)」,在遭受機械刺激時,會從肛門排出一種白色細絲,這些細絲在海水中會變長,與其他物體接觸時還會變得黏黏的,可以用來纏住捕食者,而且對某些魚類來說是有毒的。

除此之外,有些海參的肛門還有「肛齒 (anal teeth) 」,顧名思義就是長在肛門的牙齒,可以避免一些不請自來的生物,在牠的後庭來去自如;但是其實也有生物能夠自由進出海參的肛門,例如隱魚 (pearlfish) ,牠們不會被居為業小管攻擊,而且也對海參排出的毒素有較強的抵抗力,所以當海參張開肛門呼吸時,有時候你可以看到在裡面蠕動的隱魚們 say hi~,正所謂「全家就是你家,你的肛門就是我家啦!」

最後也是我覺得最酷的是,不是所有生物的肛門都像便利商店一樣 24 小時營業的,2019 年的一篇研究發現有一類櫛水母 Mnemiopsis leidyi 的肛門在排便的時候出現,之後就消失了,而重複排便間隔的時間長短則和體型大小有關,例如幼體約十分鐘、成體一小時左右,換句話說,這是一種「間歇性肛門」,科學家們認為這個發現對肛門演化過程有很大的幫助,若繼續深入研究,有機會找到永久性肛門是如何演化出來的。

關於肛門的故事,大概可以聊個三天三夜,例如肛門的演化也是非常精彩,下次當你提到肛門,但旁邊的人露出「假裝不認識你」的表情時,就可以跟他解釋肛門有多偉大、介紹那些超酷的肛門,然後他就會⋯⋯(自行想像)

-----廣告,請繼續往下閱讀-----
  1. Nielsen, C., Brunet, T., & Arendt, D. (2018). Evolution of the bilaterian mouth and anus. Nature ecology & evolution, 2(9), 1358-1376.
  2. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger-a Journal of Comparative Zoology, 256, 61-74.
  3. What is Deuterostomes?
  4. Superphylum Deuterostomia
  5. Dean, R., Nakagawa, S., & Pizzari, T. (2011). The risk and intensity of sperm ejection in female birds. The American Naturalist, 178(3), 343-354.
  6. Parmentier, E., & Vandewalle, P. (2005). Further insight on carapid—holothuroid relationships. Marine Biology, 146(3), 455-465.
  7. Flammang, P., Ribesse, J., & Jangoux, M. (2002). Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integrative and Comparative Biology, 42(6), 1107-1115.
  8. Ru, X., Zhang, L., Liu, S., & Yang, H. (2020). Plasticity of respiratory function accommodates high oxygen demand in breeding sea cucumbers. Frontiers in physiology, 11, 283.
  9. Jaeckle, W. B., & Strathmann, R. R. (2013). The anus as a second mouth: anal suspension feeding by an oral deposit‐feeding sea cucumber. Invertebrate Biology, 132(1), 62-68.
  10. Tamm, S. L. (2019). Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore. Invertebrate Biology, 138(1), 3-16.
  11. The Body’s Most Embarrassing Organ Is an Evolutionary Marvel

泄殖腔親吻是什麼?一起看影片了解吧!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

16
2

文字

分享

0
16
2
和鳥類學飛翔,讓人類學會飛行奧秘——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/30 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

飛行的物理學

「觀察在稀薄高空中飛翔的老鷹,牠的翅膀是如何鼓動著空氣,讓沉重的身體得到支撐。物體對空氣施加的力量,等於空氣對物體施加的力量。」15 世紀末,達文西在筆記本如此寫道。達文西僅憑觀察,就掌握飛行的原理了。

飛行的原理讓達文西深深為之著迷。他發明人力驅動的飛行器,試圖證明人類能否飛上天,還設計人類可以操縱的翅膀。他仔細研究飛行中的鳥,並且提出飛行的假說:「鳥類張開寬寬的翅膀,加上短短的尾巴,準備起飛,」他接著寫道,「鳥類必須用力抬起翅膀,然後放下翅膀拍動下方的空氣。」

金鵰的翅膀善用空氣分子,身體起飛與降落。圖/天才達文西的科學教室

上圖的金鵰比空氣重,但是翅膀造形卻能善用空氣分子,讓身體起飛與降落。金鵰飛行的時候,你認為氣流通過翅膀上方與下方時,哪邊的速度較快?量量看, 1 公尺有多長,是金鵰身體的長度;再量量看 23 公尺有多長?這是牠的翅膀展開的長度!再想像一下:金鵰拍動翅膀、凌空起飛的模樣。你認為翅膀上方還是下方的氣壓比較大?可以解釋原因嗎?

達文西的《鳥類飛行手稿》。圖/天才達文西的科學教室

上圖的字跡與插圖,出自達文西的《鳥類飛行手稿》 (Codex on the Flight Of Birds)。他的研究,造福許多後世的科學家,包括丹尼爾•白努利 (Daniel Bernoulli)。他在 1738 年解釋了空氣流動的科學原理。

-----廣告,請繼續往下閱讀-----

白努利認為:鳥類飛行時, 因為翅膀結構的關係,空氣通過翅膀上方的速度較快, 使得氣壓較低,而空氣通過翅膀下方的速度較,使得氣壓較高。翅膀上方與下方的壓力差,進而造成了升力。

編按:解釋飛機能升空飛行的物理概念,除了白努利概念外,尚有其他因素,例如飛行時的角度、飛機造形和其他效應等。

有許多物理概念可以解釋飛機能升空的原因。圖/天才達文西的科學教室

飛機為什麼可以在天上飛?

開始調查吧!

我們蒐集資訊,一起設計翅膀,就跟達文西一樣!我們將蒐集涵蓋翅膀形狀、空氣與運動方面的資訊,也跟達文西一樣,提出許多問題。

問題:淚珠的形狀,和飛行有什麼關係?

下圖的形狀,好像淚珠的一側。看到這種形狀,是否讓你聯想到它與飛行的關係呢?

-----廣告,請繼續往下閱讀-----
翼型會聯想到噴射機的機翼或鳥翼的形狀。圖/天才達文西的科學教室

答案:這就是翼型。

淚珠的形狀,我們稱為「翼型」。這樣的造形,可能讓你想起噴射機的機翼或鳥翼的形狀。翼型的前端是較厚的圓弧,後端則逐漸變薄、變窄。

飛行中的翼型向前挺進,空氣分子往上也朝下移動。翼型下方的空氣分子,移動的速度慢於上方滑過的空氣分子。空氣分子移動速度較慢,造成的氣壓就比較大。想像一下:翼型下方的空氣,等於處在被壓縮的狀態,翼型下方,較強的氣壓向上推,造成的力量稱為「升力」

模擬飛行中翼型的空氣分子移動狀態。圖/天才達文西的科學教室

受到鳥類的啟發

看到鳥翼的切面,居然就是翼型,你是否大吃一驚呢?說穿了,航太工程師就是從飛行中的鳥類得到靈感。移動的翼型會切過空氣,與周圍的空氣產生了力的作用。空氣分子——渺小不可見卻能施展強大的力量,從四面八方擠壓著翼型。翼型向前移動的時候,因為與空氣產生了交互作用而起飛。

將書本平放在桌上一隻手塞到書本下方,然後把書托起來。你的手在書下施展的壓力,就像慢速通過翼型下方的高壓。另一方面,通過翅膀上方的空氣,移動速度較快,形成了較低的氣壓。

-----廣告,請繼續往下閱讀-----

空氣分子在機翼上的賽跑

讓我們進一步調查

問題:通過翼型上方的空氣,是否因為空氣要通過的距離較長,因此速度才會變快?

答案:根據美國的國家太空總署 (NASA) 工程師分析,機翼上方空氣的速度很快,只是為了比下方空氣更早抵達機翼後方,而不是因為距離較長。機翼上方的低壓空氣,其實速度更快!

畫出你的翼型

畫出屬於你自己的翼型,請標示以下項目

  • 高壓區
  • 低壓區
  • 快速移動的空氣
  • 慢速移動的空氣
  • 空氣流動的方向
  • 升力的方向
嘗試畫出屬於自己的翼型。圖/天才達文西的科學教室

和達文西一起賞鳥

達文西不只觀察飛行中的鳥,他也細看鳥的各種狀態,而且反覆觀看。他寫下筆一三己,問自己問題,例如:鳥類用什麼樣的方式使用翅膀?然後想辦法找出解答。以上這些行為,就是「觀察」。

當個自然觀察家吧!住家附近就可以好好賞鳥。不管你住在哪裡,都有機會走出家門,觀察鳥類百態及其飛行方式。記得帶著筆記本、鉛筆、色鉛筆與望遠鏡,可能的話帶一台相機,現在就抽出時間邁向戶外吧!

-----廣告,請繼續往下閱讀-----

你的觀察記錄將充滿獨一無二的個人風格。看到小鳥,先用肉眼觀察。接著,以素描記錄觀察到的現象:畫出鳥類的輪廓,有沒有值得注意的花紋或樣式?先畫下外形,然後加上顏色:鳥喙是什麼顏色?腳呢?也花點精力注意體型大小:和其他鳥類相較,有多大或多小呢?有沒有攝食?歌聲或叫聲怎麼描述呢?鳥類如何起飛?如何降落?鳥類會順風起飛嗎?其他數據、記錄地點、天氣與賞鳥的時段,都要記錄下來。

用相機記錄身旁觀察到的現象。圖/Pixabay

以飛機工程師的方式來思考!

用另一種角度來看翼型。機翼後緣窄窄的後翼往上或往下,會有怎樣的效果呢?飛機工程師設計噴射機的時候,讓機翼的後緣可以伸展或彎折,透過這樣的方式讓空氣分子流動,達成特殊目的。如下圖所示請利用本小節的訊息,預測這樣設計的目的,並把假說寫在筆記本裡。

機翼不同構型讓空氣分子流動,達成特殊目的。圖/天才達文西的科學教室

下圖是根據達文西的設計而重建的機械翅膀。翅膀的形狀不像翼型,但是從喇叭似的形狀看來,功能就是壓下空氣分子,以產生向上的升力。這款翅膀有沒有讓你想起某種哺乳動物呢?

根據達文西的設計而重建的機械翅膀。圖/天才達文西的科學教室
根據達文西的設計而重建的機械翅膀很像哺乳動物蝙蝠。圖/天才達文西的科學教室

一起動手玩:創造一個翼型

實驗材料:影印紙、膠帶、30 公分長的直尺、鉛筆(最好是六角鉛筆)、吹風機

實驗步驟

  1. 輕輕彎折紙張,以垂直方向對摺。這時紙張會有淺淺的摺線,並且出現翼型般的曲面。
  2. 把紙張轉成水平方向,曲面朝下。將上半張紙的邊緣往後移 1.27 公分,用膠帶固定。
  3. 把直尺伸到紙張底下,在 5 公分處用膠帶把尺和紙黏在一起;紙張的邊緣也要和直尺黏合。
步驟 1-3 的操作示範。圖/天才達文西的科學教室

4. 把鉛筆放在距離直尺 12.7 公分處,和直尺垂直擺放,並以膠帶黏和。

步驟 4 的操作示範。圖/天才達文西的科學教室

5. 將吹風機設定最小風量模式,待會對著翼型的吹端吹。你認為吹風機啟動後,會發生怎樣的現象?請先寫出假說。

-----廣告,請繼續往下閱讀-----

6. 現在測試你的實驗設計與假說。找個夥伴握住鉛筆兩端,翼型曲面朝向你。這時再啟動吹風機的小風量模式,直尺會怎樣?你感到翼型的升力了嗎?

步驟 5-6 的操作示範。圖/天才達文西的科學教室

實驗背後的科學

如同你所認知,通過翼型上方的空氣,移動的速度比翼型下方的空氣快。翼型下方的空氣分子在較高的壓力下受到擠壓。氣壓較高的空氣分子,向上推擠。翼型下方的高壓及上方的低壓,組合起來造成了升力!

——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

-----廣告,請繼續往下閱讀-----