分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

證明「費馬最後定理」:懷爾斯生日│科學史上的今天:4/11

Photo Credit :wiki

兩千多年前畢達哥拉斯發現直角三角形斜邊的平方等於直角兩邊的平方和,於是成了我們每個人應該都背過的畢氏定理:a2+b2=c2;而其中存在許多整數解,例如(3、4、5)、(5、12、13)。那麼三次方以上呢?也可以找到對應的整數解嗎?

1637 年,法國數學家費馬斷定地說沒有!他讀到丟番圖的《算術》一書中畢氏定理的論證時,在附近空白處寫下了著名的「費馬最後定理」:

「另一方面,一個數字的立方不可能表示成兩個立方數的和,一個四次方數也不能表示成兩個四次方數的和;或者更概括性地說,除了平方之外,一個n次方的數也不能表示成兩個n次方數的和(x+ y= zn)。我已為這個命題找到了一個非常美妙的證明,然而這裡的空間不足以讓我寫下這個證明。」

自此包括大數學家歐拉在內的無數數學家前仆後繼,試圖證明此定理,但直到 1839 年,僅證明 n=3、4、5、7 時成立(n為這些數的倍數時也就當然成立),此後即再無進展(那些用電腦證明的同學不用舉手)。於是這個定理的證明就只有費馬與上帝知道──或者他以為他知道。

沒有人料到這沉寂會在毫無預警的情況下被打破。1993 年 6 月,英國數學家懷爾斯(Andrew J. Wiles)在劍橋大學辦了三場演講,事先沒有人知道他要談費馬最後定理,雖然他的題目跟費馬最後定理有些關係,但畢竟之前從未聽聞他在做這方面的研究,大家自然不會作此聯想。直到第二天,參加演講的聽眾才發覺懷爾斯是在談如何攻克費馬最後定理這座高山的登山路線。於是耳語立刻在數學界傳了開來,最後一場演講擠滿了聽眾,內向害羞的懷爾斯果然當場公佈了他完成的證明,令全場為之嘩然。這消息也立刻傳遍全世界,第二天各國的頭版都刊登了這則數學史上的重大事件。

人們才知道懷爾斯已經默默地在這問題上耕耘了七年,除了妻子與一位同事,沒有告訴任何人。然而,懷爾斯的喜悅沒有持續太久;幾個月後他的證明被發現有致命的錯誤,也就是說證明無效!懷爾斯試圖修補這個錯誤,經過一年多的嘗試,就在他打算放棄之際,他改採曾被他丟在一旁的方法,終於取得突破,而於 1994 年 9 月完成證明,並於次年發表。這一次,經過同儕審查完全無誤,高懸三百多年的費馬最後定理終獲證明。懷爾斯也從此在歷史留名。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

 喜歡泛科學的文章嗎?
好知識應該要讓更多人知道,除了按讚跟分享,我們更希望你也能告訴大家你的獨門知識和專業。
 
 
如果你想要加入科普的行列卻不知道從何開始,就讓泛科學幫助你吧!
總編輯鄭國威掏心掏肺教你如何把艱深難懂的硬知識,變成不分享會死的熱門文章!➡️課程說明

關於作者

張瑞棋

1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。自小喜愛科學新知,浮沉科技業近二十載後,退休賦閒在家,更成為重度閱讀者。當了中年大叔才成為泛科學專欄作者,著有《科學史上的今天》一書,如今又因翻譯《解事者》,而多了個譯者的身分。