2

1
2

文字

分享

2
1
2

花了三百年才證明的世紀難題:費馬的最後定理

數感實驗室_96
・2019/08/17 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 538 ・八年級

數感實驗室/朱倍玉

如果有人突然問你: \(  a^{2}+b^{2=} \)? 台灣學生大概像膝反射一樣,自然而然地答出 \( c^{2} \)

直角三角形,直角的兩鄰邊長的平方和等於斜邊長的平方。這是人人都熟悉的畢氏定理,也是百年數學之謎「費馬最後定理」的一部分。

費馬提出的世紀難題

費馬的本業是律師,但因為熱衷數學研究而被譽為業餘數學王子。圖/wikipedia

費馬(Pierre de Fermat)是 17 世紀的一名律師,數學是他業餘的興趣,當時與他書信往來的包括了笛卡爾、帕斯卡、惠更斯等歷史上知名的數學家。雖然費馬本業跟數學天差地遠,但他相繼提出微積分、機率論與數論的研究,在數學界的貢獻不輸職業數學家,也因此獲得「業餘數學家王子」的封號。

-----廣告,請繼續往下閱讀-----

研究《算數》(Arithmetica)這本書時,費馬在書的空白處寫下「\(  a^{n}+b^{n}=c^{n} \),當 \(  n>2  \) 時無正整數解」,並且用拉丁文留下一句話「我發現了一個極為美妙的證明,可是空白處太小所以沒寫下來」。

短短一條小學生就能理解的式子,再加上一句話,卻讓後世的數學家們花了足足三百年,直到 1995 年才由懷爾斯(Andrew John Wiles)教授完成證明,而這項證明,被稱為上個世紀的大任務。

(2019/8/20) 編按:原文提及費馬定理時敘述為「無解」,實為「無正整數解」,特此更正。

懷爾斯在費馬的出生地前留影,其後是「費馬猜想」的雕刻。圖/wikipedia

立志要趁早,十歲許願解題的懷爾斯

這個世紀大任務的起點是懷爾斯 10 歲那年。他在圖書館翻閱一本講述費馬最後定理歷史的書,當時,他便對費馬留下來的難題產生濃厚興趣。在其他人才正要認識三角形的年紀,懷爾斯已經下定決心要解決這道流傳百年的難題。正好,又提供大家一個立志要及早的偉人例證。

-----廣告,請繼續往下閱讀-----

跟很多成就大事的人一樣,懷爾斯在研究費馬最後定理的過程並非一帆風順。他踏入數學界的時期,正好是數學界準備放棄費馬最後定理的時候。大多數學家認為費馬最後定理無法證明,紛紛轉往其他領域。懷爾斯的指導教授也不例外,要懷爾斯放棄夢想,別白忙一場。也因此除了夢想外,他同時開始研究橢圓曲線註1這個領域。

然而事實上在更早以前,日本數學家谷山豐和志村五郎提出「谷山-志村猜想」,他們認為橢圓曲線與「模形式」註2可能有關聯。但是,橢圓曲線或是它與模形式的關聯跟費馬最後定理有什麼關係呢?1985 年,德國數學家佛列(Gerhard Frey)將谷山-志村猜想與費馬最後定理連結,他認為谷山-志村猜想可能可以協助完成費馬最後定理的證明。

後來,法國數學家賽爾(Jean-Pierre Serre)、美國數學家里貝特(Ken Ribet)也投入研究。他們發現只要證明出谷山-志村猜想就可以完成費馬最後定理的證明,才再次啟動懷爾斯的世紀難題證明之路。

卡茲協助懷爾斯完成證明費馬最後定理的最後一哩路。圖/wikipedia

於是,長達 7 年的時間,懷爾斯致力於研究谷山-志村猜想與費馬最後定理,他也找來另一位數學教授卡茲(Nicholas Katz)加入研究。懷爾斯是一個很低調的人,為了避免引起眾人的懷疑與關注,他在學校開設新課程,好讓卡茲協助他找到證明費馬最後定理所需要的最後一項工具──類數公式註3

-----廣告,請繼續往下閱讀-----

由於懷爾斯從未說明開課目的,也沒向學生解釋這個公式將幫助他們通往費馬最後定理,只是不停地證明,難度相當高,搞到最後台下聽眾就只剩下卡茲。不久後,懷爾斯正式完成所有證明。他選擇在劍橋大學舉辦三場研討會,對外宣稱研討會的內容討論的是橢圓曲線和模形式,完全沒提到費馬最後定理。

當時有些謠言,這場研討會似乎有更勁爆的突破要發生,許多學者因此前來。研討會上,懷爾斯從橢圓曲線、模形式,一路證明到費馬最後定理,帶給台下聽眾滿滿的驚喜。隔天報章雜誌上,到處都在報導世紀難題已經解決的喜訊。

Diophantus-II-8-Fermat
儘管過程如此曲折,世紀難題終究還是從未竟之謎的名單中消除了。圖/wikipedia

以為解開了嗎?過程曲折離奇

然而「福兮,禍之所伏」,驚喜後面還藏了一個巨大的驚嚇。當懷爾斯的證明手稿進入審查階段,卡茲與懷爾斯反覆驗證時,他們找到一處先前完全沒發現的錯誤。

人們尖銳地檢視著懷爾斯的失誤,漫天的喜訊瞬間化成毫無遮掩的嘲諷。懷爾斯接受訪問時也表達,在備受矚目的狀態下進行研究並不是他的風格。他把自己關在書桌前,試圖解決這個錯誤,然而不論怎麼做都沒辦法突破。

-----廣告,請繼續往下閱讀-----

就在陷入絕望之際,他偶然在桌邊看到一份關於「岩澤理論」的論文。一時靈光乍現,他運用了岩澤理論來化解掉原先證明的錯誤,完成證明。1995 年,世紀難題才正式從未竟之謎的名單中消除。

「或許,我能給出關於我研究數學的歷程最貼切的描述,就是進入一棟大房子。當一個人開始探索第一個全黑的房間時,裡頭一片漆黑,他會在家具中邊跌倒邊摸索。漸漸地知道家具的位置。六個月後,你會找到開關並且打開燈。開燈的那一瞬間,整個房間被光線壟罩,你終於,能清楚地看見你站在哪裡」

——懷爾斯(Andrew John Wiles)

BBC拍攝了一部關於破解費馬最後定理的紀錄片,這段話正是懷爾斯在片頭的開場白。

破解費馬最後定理的世紀任務就像是完成一場接力式的拔河比賽,仰賴歷史上許多數學家的一臂之力,更需要在時間的沖刷與眾人的關注下承擔壓力的決心。從這個例子我們也可以看到,數學不是計算,更不是算得快就叫數學好。它是思考與邏輯,能讓許多人投入一生也樂此不疲的遊戲。

今年的 8 月 17 日,正好是費馬的 418 歲生日,特別寫這段費馬留給後人的禮物來祝他生日快樂!

-----廣告,請繼續往下閱讀-----

註釋:

  1. 橢圓曲線(Elliptic Curve)是二元三次曲線的一種形式,其圖形並非橢圓,而是圓環狀。
  2. 模形式(Modular forms)是具有極複雜對稱性的複數平面函數。
  3. 類數公式(Class number formula)與環的有限序列有關。

資料來源:

文章難易度
所有討論 2
數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
2

文字

分享

1
1
2
為什麼A4的紙張邊長比是根號2呢?──《數學好有事》
PanSci_96
・2018/05/10 ・2567字 ・閱讀時間約 5 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

圖/wikipedia

學校教過的數學課程中最讓人印象深刻的,可能是畢氏定理

這個定理是:取一直角三角形,以直角的兩邊(股)為邊長各畫一正方形,則這兩個正方形的面積總和,會等於第三邊(斜邊)畫出的正方形面積。邊長為 a 的正方形,√2面積是 a×a = a²。如果這個直角三角形的邊長為 a、b、c,且 c 是最長邊,那麼畢氏定理得出的結果是:

a²+ b² = c²

-----廣告,請繼續往下閱讀-----

從這個漂亮的結果,你可以算出各種東西,包括正方形的對角線長等。正方形的對角線加上兩邊,就構成了直角三角形,如果正方形的邊長為 1,由畢氏定理可知:

1² + 1² = 2 = d²

這表示對角線的長度 d 等於√2,也就是自乘結果等於 2 的數。

圖/wikipedia

-----廣告,請繼續往下閱讀-----

讓人有點尷尬的√2

除非你已經發覺√2有點難定出精確的數值,否則這個數沒什麼大不了的。如果拿 1.5 自乘,會得到 2.25,比 2大很多;改用 1.4,則得到 1.96,又變得太小。(1.41)2 = 1.9881,還是太小,但(1.42)2 = 2.0164 又會超過 2。

看起來無計可施,事實上也的確辦不到。√2是無理數,意思是無法寫出它所有的位數:完整的小數展開式是無窮盡的,而且沒有不斷重複出現的數字模式。

√2前面 20 位是:

1.4142135623730950488

-----廣告,請繼續往下閱讀-----

發現無理數,可能招來殺身之禍

圖/wikipedia

簡單的正方形對角線,無意間產生了一個性質極為有趣的數。但事實上,畢達哥拉斯(Pythagoras)的門徒不太高興。畢達哥拉斯學派是西元前五世紀活躍於克羅頓(Croton,現今的義大利)的祕密幫派,除了奉行素食主義以及不吃豆類之外,他們把求知尊為道德健全生活的基石。數學是畢氏哲學的核心:據說 mathematics(數學,意為「所學習的」)及 philosophy(哲學,意為「愛好智慧」)這兩個詞是畢達哥拉斯所創,據傳,「萬物皆數」是他的座右銘。

問題是,畢氏學派所指的「數」只有整數及整數之比,也就是 ½、¼、¾ 等分數。無理數沒辦法寫成分數;事實上,這正是定義無理數的方式(如果你熟悉長除法,就可以自行驗證,任何一個分數都能表示成有限小數或循環小數)。

希帕索斯。圖/wikipedia

-----廣告,請繼續往下閱讀-----

希帕索斯(Hippasus of Metapontum)發現有些數(譬如√2)可能是無理數,他也是畢氏學派的一員,根據(相當隱晦的)歷史證據顯示,他因此受到嚴厲的懲罰:在海上沉船淹死。應該沒幾個人因為區區一個數而丟了性命吧?

無理但不悖理

證明√2是無理數的標準證法,是數學上經常使用的論證形式的重要範例,也就是歸謬法。要證明某件事(比方說√2是無理數),你必須先做相反的假設(√2可以寫成分數),如果之後推算出矛盾的結果,就能斷定你原先的假設一定是錯的,也就證明你最初的陳述(√2是無理數)必定為真。

這是很自然的推理方法,舉例來說,你假設管家殺了人,但如此一來,管家必須同一時間出現在兩個地方,這顯然說不通,那麼你就能推論原先的假設必定是錯的,而管家是清白的。歸謬法是數學的支柱,但也可能產生令人驚訝的結果。你將在第 3 章看到更多的例子。

希帕索斯的發現只是巨大冰山的一角。隨便取一小段數線,不管多小段,都有無窮多個無理數。那些能寫成分數的有理數,可以依序排列並賦予 1、2、3 等標籤,但無理數實在太多了,根本沒辦法用同樣的方式來區隔。你在數線上隨意一戳,碰到無理數的機率是 1,而碰到有理數的機率是 0。因此就數字而言,畢氏學派完全錯了。

-----廣告,請繼續往下閱讀-----

√2可以是好事

假如畢氏學派知道無理數多麼有用,大概就不會因為有人發現無理數而這麼不高興了。幾乎每天都會用到的例子是紙張。歐洲採用的標準紙張尺寸 A5、A4、A3 等,有個非常棒的特點,就是將兩張同尺寸的紙並排起來,即能拼成大一級的尺寸,譬如兩張A4紙能拼成一張 A3。且小一級紙張寬度(W)的兩倍,等於大一級紙張的長度,而小一級紙張的長度(L)等於大一級紙張的寬度。

A 系列紙張大小。source:Wikipedia

所有尺寸的紙張,長寬比都是一樣的,也就是:

可以改寫成:

-----廣告,請繼續往下閱讀-----

意思就是:

A 系列紙張的正字標記就是每張紙的長寬比均為 √2。

為什麼這很有用?如果你希望影印機能夠把原稿縮小(或放大)一級影印,就需要此系列紙張的各個尺寸有同樣的長寬比。假如長寬比不同,縮小影印後周圍就會多出白邊。兩張同尺寸的A系列紙張可並排成大一級的紙張,代表不管你想把兩張A4還是一張A3縮小一級,都可以採用同樣的縮小倍率。

影印機還會自動計算。如果你要縮小,影印機提供的倍率是 70%,有時候是 71%,把這些數字寫成小數(70 或 71 除以 100),結果是 0.7 及 0.71,兩個數都非常接近:

-----廣告,請繼續往下閱讀-----

這個縮小倍率,正是把一張 A3(或兩張 A4)縮小到一張 A4所需要的比例。原紙張的長度 L 與寬度 W 會縮小到 L/√2 及 W/√2,這表示新紙張的面積會變成:

就是原來的一半,且因長寬比維持不變,所以能把原來的紙張剛好縮小到 A4 的尺寸。

放大影印也是同樣的道理。影印機提供的放大倍率是 140% 或 141%,對應的數字很接近,所以可以把一張A4 放大到 A3 的尺寸。


BOX:證明√2是無理數

假設 √2 = m/n,其中的整數 m 與 n 沒有公因數(除了 1,沒有其他數可同時整除 m 和 n)。

於是:2 = m²/n²,因此:2n² = m²。

這表示 m2是偶數,m 也是偶數,因為奇數的平方永遠是奇數。所以, m 可以寫成 2k,而 k 是某個正整數。把上式中的 m 換成 2k,就得到:2n2 = m2 = 4k2

除以 2,就是:n2 = 2k2

所以 n2 也是偶數,n 也是偶數,但這產生了矛盾,因為我們一開始假設 m 與 n 沒有公因數。因此,√2不能寫成 m/n,即為無理數。

本文摘自《數學好有事》,麥田出版

所有討論 1

0

2
0

文字

分享

0
2
0
笛卡兒座標系:將思考推往高維度的世界——《用數學的語言看世界》
臉譜出版_96
・2018/01/14 ・3975字 ・閱讀時間約 8 分鐘 ・SR值 533 ・七年級

劃時代的想法「笛卡兒座標系」

15 世紀,古騰堡(Gutenberg)將活字印刷應用化之後,歐幾里德的《幾何原本》也變成活字版本了。從 1482 年威尼斯的初版開始, 世界上有超過一千種版本,可以說是除了《聖經》之外,銷量最多的 一本書。幾乎可以說《聖經》跟《幾何原本》是支撐歐洲文明的兩大支柱。

笛卡爾《談談方法》原版封面。圖/wikimedia commons

為歐幾里德的平面幾何帶來偉大變革的,是 1596 年出生的近代理性主義之父笛卡兒(Descartes)。笛卡兒在他的著作《談談方法》 中,提出追求真理的四大步驟:

1. 如果不是具有明證的真理,就不承認其為真。
2. 為了更加了解問題,要將問題分割成許多小問題。
3. 思考的順序是從單純的事物開始,依序往複雜的事物前進。
4. 小問題都解決了之後,將小問題全部列出來,看看是否有遺漏, 能不能涵蓋原本的大問題。

勒內·笛卡兒畫像,圖/by Frans Hals@wikipedia commons。

-----廣告,請繼續往下閱讀-----

這也反應出了《幾何原本》的精神,從看起來理所當然的公理開始,一步步推導向複雜的圖形性質。

這個《談談方法》,是討論關於探討真理的方法的書籍序論。笛卡兒提出了一個幾何學上的新見解,做為這個方法的試論,那就是:

「平面上的點都可以用一組兩個的實數來表示,也就是(x, y)」。

在平面上垂直相交的兩條線,分別稱為 x 軸以及 y 軸。為了表示平面上的點的位置,將點分別與 x 軸以及 y 軸做垂線,相交的點分別為 x 以及 y,於是這個點的位置就可以用 (x, y) 來表 示,這就是所謂的「笛卡兒座標系」(圖 6-10)。

雖然座標軸這個概念並不是笛卡兒發明的, 這樣的座標系也可以稱為「直角座標系」,但因為笛卡兒用這個座標系導入新的幾何學概念,所以我在此稱之為「笛卡兒座標系」。使用笛卡兒座標系的話,平面幾何的問題都可以代換成關於(x, y)的計算問題,連歐幾里德的五個公理, 都可以用笛卡兒座標來解釋了。

-----廣告,請繼續往下閱讀-----

圖 6-10 笛卡兒座標系(直角座標系),圖/《用數學的語言看世界》提供。

例如,〈公理 3〉提到,平面上兩點(x1, y1)與 (x2, y2),以一點為圓心,求通過另外一點的圓的解。「圓」就是與某一點距離相同的 所有點的集合,所以首先計算這兩點的距離。 如圖 6-11,可以將(x1, y1)與 (x2, y2)的距離,也就是這兩點所連 結的線段想像成長方形的對角線。

根據畢氏定理,對角線的長度 r 的平方,就是長邊與短邊的平方和。也可以表示成:

〈公理 3〉的「以(x1, y1)為中心,通過(x2, y2)的圓」就是與點(x1, y1)距離 r 的所有點的集合,因此滿足下面算式的所有(x, y)的集合就是解答。

-----廣告,請繼續往下閱讀-----

(x - x1) 2 + (y - y1) 2 = r2

利用笛卡兒座標系,就可以將歐幾里德的幾何學問題化為方程式問題了。

圖 6-11 兩點間的距離 r,可以當作長方形的對角線來計算,圖/《用數學的語言看世界》提供。

用方程式解開美妙的「垂心定理」

2009 年,日本數學書房出版了一本名為《這個定理真美妙》(この定理が美しい)的書。這是一個大型企畫,由 20 位作者分別選出自己認為最美妙的數學定理,並且講述定理獨特的魅力,而我也選了「基本粒子論」中使用到的定理。在這本書中,京都產業大學的牛瀧文宏先生選了平面幾何的「垂心定理」。

要介紹垂心定理,得先介紹三角形的垂線。由三角形的頂點向對邊做一條垂直的線,這條線就稱為垂線。三角形有三個頂點,理所當然就有三條垂線。所謂的「垂心定理」是指,這三條垂線必會相交在一個點,而這個點稱為垂心。

-----廣告,請繼續往下閱讀-----

三角形垂心:由三角形的頂點向對邊做一條垂直的線的「垂線」,三條垂線必會相交在一個點,而這個點稱為「垂心」。圖/wikimedia commons

兩條直線如果不是平行的話,一定會在某處相交,形成一個交點,這是理所當然的事情。但是三條直線,就不一定會相交在同一個點了。牛瀧先生在關於垂心定理的描述中提到,「當時身為中學生的我,被那個即使用盡了我的全力也無法到達的境界的證明所懾服,圖形的協調以及層層堆積的理論,使我確確實實感受到定理的美妙」。 古希臘時代流傳下來的,關於垂心定理的證明,巧妙的使用了輔助線,說是藝術也不為過。網路上有許多關於垂心定理的證明,有興趣的人不妨參考。

在這邊利用笛卡兒座標系來證明這個定理。證明中不講求細節, 只是希望大家能感受一下方程式的氣氛,體會一下「將幾何問題化成方程式」的感覺。

假設三角形的頂點為 a = (0,0),b = (p,0), c = (q,r)。頂點 c 對 ab 邊的垂線,可以用方程式表示為:

x = q

頂點 a 對 bc 邊的垂線也可以用方程式表示為:

頂點 b 對 ca 邊的垂線也可以用方程式表示為:

最初的兩個方程式是 x,y 的聯立方程式,求解之後可以得到 :

(x, y) =(q, (p - q)q/r)

這個解也能滿足第三個方程式。也就是說,這三個方程式有共同的一個解。換句話說,三條垂線具有一個共同的交點,也就是垂心。

這個證明不像古希臘流傳下來使用輔助線的證明方法那樣帶有藝術性。只是先將題目中的垂線利用笛卡兒座標表示成方程式,接著解聯立方程式,按照步驟機械式地一步步操作而已。但正是因為不需要靈感,所以只要知道解法,誰都可以證明出同樣的答案。

-----廣告,請繼續往下閱讀-----

如果使用輔助線的證明方法是在田野間悠閒騎著腳踏車,享受著田園風景前進,那麼利用笛卡兒座標系的證明方法就如同搭上由精密機械組裝而成的新幹線呼嘯而過一般。笛卡兒座標終結了幾何學的牧歌時代,進入了重視效率的近代。

利用尺規作圖畫出的正五邊型,圖/by Hkpawn@wikipedia commons。

有科學技術的地方,就有笛卡兒座標系

高斯定理:「如果圖形的邊長比,能夠利用加減乘除或是平方根的有限次數組合來表示的話,這個圖形就可以作圖,如果不能,圖形就不能作圖」也可以用笛卡兒座標系簡單解釋。作圖的基本規則是只使用尺跟圓規,所以又稱為尺規作圖。在笛卡兒座標系中,利用尺畫出的直線,可以表示為一次函數 y = ax + b,利用圓規畫出的圓是二次函數 (x - x1) 2 + (y - y1) 2 = r2

因此,重複這些步驟作圖得到的線段長的比值,就是一次方程式以及二次方程式相互組合的解,也就是「可以利用加減乘除或是平方根的有限次數組合來表示」。

-----廣告,請繼續往下閱讀-----

笛卡兒座標不僅僅影響了幾何學,對於科學技術方面的影響更是廣泛且重大。笛卡兒出版《談談方法》的序文〈探討真理的方法〉時,剛好是伽利略的晚年。

伽利略發現了許多關於物質運動的重要現象,包括——

  • 鐘擺的等時性」:鐘擺的擺動週期是固定的,與擺動幅度無關;
  • 自由落體法則」:物體落下時所需要的時間與物體重量無關;
  • 慣性法則」:以等速度移動的物體,在不施加外力的狀況下,會一直維持等速度運動;
  • 相對性」:在等速度移動的座標系中的力學法則,看起來與靜止座標系中的力學法則相同。

但是,即使發現了這麼多重大的發現,伽利略卻沒有完成力學體系,其中一個原因,或許是因為伽利略並不知道笛卡兒座標系吧。

伽利略畫像,圖/by Justus Sustermans@wikipedia commons。

-----廣告,請繼續往下閱讀-----

在伽利略過世那年出生的牛頓,為了將力學以及重力學的法則用 數學方法表示時所使用的,正好就是笛卡兒座標系。從此以後,科學以及工程學的各式各樣方程式都可以利用笛卡兒座標系表示。

今日,只要是有科學技術的地方,就有笛卡兒座標系。例如,電腦螢幕或是手機畫面上的點的位置,就是轉換成笛卡兒座標系,以數字表示,而能使電腦處理畫面上的圖像。

將思考推往高維度的世界

笛卡兒座標還有另一個重大貢獻,它將人類的思考從平面中解放,前往更高維度。

二維平面的點可以用一組兩個的數字(x,y)表示,三維空間的點也能用一組三個的數字(x,y,z)代表。在三維空間中畫出互相垂直相 交的三條直線,稱之為 x 軸、y 軸、z 軸,在三維空間的點,分別對 這三個軸做垂線,得到 x、y、z 的數值,這個一組三個的數值就是點的座標。

二維平面上兩點(x,y)與(x’,y’)的距離 r 的公式是:

同樣的,三維空間中兩點(x,y,z)與(x’,y’,z’)的距離 r 公式是:

利用座標表示點的位置的話,能夠簡單地表示比三維更高維度的空間。n 維度的空間,就是無數個由一組 n 個數的座標(x1,……,xn)所表示的點的集合。三維的世界是眼睛可以看到的世界,但我們還是會懷疑、思考看不到的四維以上的空間到底有沒有意義。然而,我們的日常生活所遭遇的事物之中,就隱藏著高維度世界。

 

 

本文選自《用數學的語言看世界:一位博士爸爸送給女兒的數學之書,發現數學真正的趣味、價值與美》,臉譜出版

 

 

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。