0

1
1

文字

分享

0
1
1

世界就是量子波函數:如果不驀然回首,那人還會在燈火闌珊處嗎?——《詩性的宇宙》

PanSci_96
・2017/11/20 ・4664字 ・閱讀時間約 9 分鐘 ・SR值 566 ・九年級

有關量子力學真正讓我們煩惱的是,理論中竟然出現了「觀測者」這個詞語。

誰才是「觀測者」?是狐狸?相機?還是你?source:Michail Kirkov

到底什麼才算是個「觀測者」,或者什麼才算是「觀測」呢?顯微鏡算不算?還有使用顯微鏡的有意識的人類算不算呢?松鼠呢?還有攝影機呢?倘若我並沒有仔細觀測,而只是瞥它一眼呢?到底是什麼時候才會發生「波函數塌縮」呢?

  • 這裡說明一下以免你日夜懸念:現代物理學家幾乎沒有人認為「意識」和量子力學有絲毫關連。的確有少數人破除舊習而相信這點,不過那些人少之又少,並不代表主流思潮。

這些議題統稱為量子力學的「測量問題」(measurement problem)。物理學家為它苦思了數十年,如今依然沒有共識。不知道該如何解決。

量子力學並不描述任何基底的「東西」:我們向來可容許談論的,完全就只是實驗測量的結果,圖/by pixabay。

不過,他們有一些構想。有種門路主張,即便波函數在預測實驗結果方面確實扮演要角,卻沒有真正展現出物理實相。說不定除了波函數之外,另有更深邃的方法可以來描述世界,而依循那種方式呈現的世界演化,原則上是完全可預測的。這種可能性有時也稱為「隱變數」(hidden variables)途徑,因為它暗示我們根本還沒有標定出最能妥善描述量子系統狀態的真正做法。倘若該理論成立,那麼它必然是非局部性的——系統各部分都必須與空間其他部分直接互動。

此外,還有個更基進的途徑,那就是乾脆完全否認存有基底現實。這是量子力學的一種反實在論派途徑,因為它認為理論不過就是種有系統的紀錄裝置,用來預測未來的實驗結果。若你請教反實在論者那門知識是關於當前宇宙的哪個層面,他們會告訴你問這種問題並不明智。依循這種觀點,量子力學並不描述任何基底的「東西」:我們向來可容許談論的,完全就只是實驗測量的結果。

-----廣告,請繼續往下閱讀-----

採行反實在論是相當戲劇性的一步。不過看來這門學說也曾獲得量子力學奠基人、泰斗權威尼爾斯.玻耳(Niels Bohr)的提倡擁護。他的觀點經描述為「沒有所謂的量子世界,只有個抽象的物理描述。我們不該認為,物理學的使命是找出自然的現狀。物理學乃是關於我們能夠如何講述自然。」

有關反實在論的最大問題或許在於,我們很難看出,一個人抱持這樣的立場,如何能完美地一以貫之。就一方面我們可以說,我們對自然的認識並不完備;不過若有人說沒有所謂的自然這種東西,那就完全另當別論了。就一方面,講那種話的人是誰?就連玻耳也(上述引文裡面)談到,「關於自然」我們能夠講述的事項。照這樣看來,那似乎便隱指有某種號稱「自然」的東西,而且我們也可以就此講述一些事情。

量子本體論——波函數

所幸我們還沒有耗盡我們的可能性。最簡單的可能性是,量子波函數完全不是種有系統的紀錄裝置,也不是許多種量子變數之一;波函數完全就是把現實直接呈現出來。誠如牛頓或拉普拉斯的理念,世界在他們眼中可以是粒子的一組位置和速度。現代量子理論學家則把世界想成一種波函數,沒有其他。

這種穩健品牌的簡明量子國度,可能會遇上一個難題,那就是測量問題。倘若一切事物就只是波函數,那麼釀成波函數「塌縮」的因素為何,還有為什麼觀測動作那麼重要?

-----廣告,請繼續往下閱讀-----
艾弗雷特三世。圖片來源:wikipedia

1950 年代,一位名叫休.艾弗雷特三世(Hugh Everett III)的年輕物理學家提出了一項解答。他主張只有一種量子本體論「波函數」而且它從頭到尾也只有一種演化方式,即依循薛丁格方程式。沒有塌縮,而且系統和觀察者之間也沒有根本區分,觀測完全不扮演什麼特殊角色。艾弗雷特宣稱,量子力學很安穩地與決定論形式的拉普拉斯派世界觀完全契合。

不過,倘若真是如此,為什麼在我們看來,當我們觀察波函數時它們就會塌縮?以現代語言來講,這個戲法可以追溯至量子力學一種稱為「纏結」的特徵。

依古典力學,我們可以設想世界的所有不同片段各具自己的狀態。地球繞著太陽運行,它有特定的位置和速度,火星也自有本身的位置和速度。但量子力學陳述的是另一種故事。沒有一個波函數專屬於地球,也沒有一個專屬於火星。相同道理,整個太空也都沒有這種現象。整個宇宙同時就只有一個波函數—這就是我們不帶絲毫謙遜所宣稱的「宇宙波函數」。

波函數不過就是我們指定給每個可能測量結果的數值,就像粒子的位置。於是那個數字能告訴我們,得出那項結果的機率。機率是以波函數平方來求得的:這就是著名的玻恩定則(Born rule),名稱得自德國物理學家玻恩。所以宇宙波函數為宇宙間各個物體如何遍布空間的所有可能方式各指定一個數字。波函數為「地球在這裡、火星在那裡」指定一個數字,也為「地球位在這另一個地方,火星則位於其他某處」指定一個數字,並依此類推。

-----廣告,請繼續往下閱讀-----
圖/by PIRO4D@pixabay。

因此地球的狀態可以和火星的狀態纏結。就行星這類的大型宏觀事物而言,這種可能性並不能落實為某種可論證的方式。不過,就基本粒子一類的微小事物而言,這種現象就隨時可見。假定我們有兩顆粒子——愛麗絲和鮑伯,它們各自能以順時鐘或逆時鐘方向自旋。宇宙波函數可以指定百分之五十的機率給愛麗絲採順時鐘自旋且鮑伯採逆時鐘自旋,另外百分之五十的機率則指定給愛麗絲採逆時鐘自旋且鮑伯採順時鐘自旋。我們完全不知道當我們測量這其中一顆粒子的自旋時,結果會得出哪個答案:不過我們知道,一旦我們測量當中一顆,另一顆絕對會採另一個方向自旋;它們彼此纏結。

艾弗雷特說明,我們應該根據表面意義來看待量子力學的形式主義。不只你打算觀測的系統是以一個波函數來描述,連你自己都是以一個波函數來描述。這就表示你有可能處於一種疊加態。艾弗雷特指出,當你測量一顆粒子,想瞭解它是採順時鐘或是逆時鐘方向自旋,波函數並不會塌縮成某一可能性。它會平滑演化成一種纏結疊加態,其中部分是「粒子順時鐘自旋」且「你見到粒子順時鐘自旋」,還有另一部分則是「粒子逆時鐘自旋」且「你見到粒子逆時鐘自旋」。疊加態的兩個部分實際上都存在,而且它們會服從薛丁格方程式的要求,繼續存在並不斷演化。

接著,我們就有個候選的最終答案,可用來解答那個至關緊要的本體論問題:「世界到底是什麼?」世界是個量子波函數。起碼在更好的理論出現之前是這樣。

氫原子在不同能量下,電子的波函數。source:wikimedia

艾弗雷特的量子力學

艾弗雷特的量子力學陽春途徑——唯有波函數和平滑演化,沒有新的變數或不可預測的塌縮,也沒有對客觀現實的否認——如今被冠上了「多世界詮釋」(Many-Worlds Interpretation)的稱號。宇宙波函數的兩個部分,一個你會見到粒子順時鐘自旋,另一個你會見到它逆時鐘自旋,這兩種演化到最後會完全相互獨立。往後雙方不再有溝通或干涉現象。這是由於你和那顆粒子,在稱為「退相干」(decoherence)的歷程當中,與宇宙的其餘部分纏結所致。波函數的不同部分是不同的「分支」,所以我們可以方便地說,它們描述了幾個不同的世界(從宇宙波函數所描述的「自然世界」來看,這依然是「一個世界」,不過波函數有許多不同分支,而且各分支獨立演化,所以我們稱它們是「幾個世界」-我們的語言還沒趕上我們的物理學)。

艾弗雷特/多世界量子力學途徑,有許多值得珍愛之處。就本體論來講,它很精實能幹:只有量子態和唯一的演化方程式。它是完全決定論的,即便是個別觀測者,他們在實際檢視世界之前,也不能區辨出他們究竟身處哪種世界,所以涉及有人進行預測時,必然含有某種機率成分。同時,它在解釋測量歷程等事項時都不會遇上困難,而且也不需動用任何有意識的觀測者來執行這種測量。所有事物都只是種波函數,所有波函數都依循相同的方式來演化。

-----廣告,請繼續往下閱讀-----

當然了,宇宙的數量多得數不清。

以艾弗雷特的理論解釋薛丁格的貓,在開盒的瞬間,不同狀態的貓便分散到平行世界去了,如果我們看到貓是死的,那麼在另一個平行世界,這隻貓卻是活的。圖片來源:Christian Schirm@wikipedia

許多人反對多世界詮釋,因為他們就是不喜歡外界有那許許多多宇宙的構想。特別是不可觀測的宇宙——理論預測有那些宇宙,然而我們永遠不會有實際做法來看見它們。這並不是非常深思熟慮的反對意見;倘若我們的最好理論預測某件事是真的,那麼在更好的理論出現之前,我們就該為它實際為真的情況,賦予較高的貝氏信任度。倘若你對多重宇宙有某種內在的或先驗的負面感受,那麼你當然可以想盡辦法研擬出更好的量子力學表述。不過負面感受並不是種有原則的立場。

有個祕訣可以讓你和多世界詮釋和平共處,那就是領會那途徑並不是從量子力學的形式主義入手,然後再添入一個大得荒謬的多重宇宙。就形式主義看來,所有宇宙早都在那裡了,起碼有那個可能。依循量子力學描述,各個物體都是處於不同測量結果的疊加態。宇宙波函數自動把整個宇宙就是處於這種疊加態的可能性包括在內,接著我們選擇以「多重世界」來談論這種疊加。所有其他版本的量子力學,則必須設法「去除額外的世界」——做法是改變動力學原理,或者增添新的物理變數,或者否認現實本身的存在。然而這在解釋力或預測力上都沒有長進,還非必要地讓一種簡單的架構變得複雜——起碼在艾弗雷特眼中是如此。

有個祕訣可以讓你和多世界詮釋和平共處,那就是領會那途徑並不是從量子力學的形式主義入手,然後再添入一個大得荒謬的多重宇宙,圖/by TheDigitalArtist@pixabay。

這可不是說,我們就沒有非常好的理由來關注艾弗雷特派量子力學。根據艾弗雷特所述,波函數分支出不同的平行世界,並不是種客觀的特徵;它只是談論基底現實的一種方便說法。不過,究竟是什麼因素決定了區劃不同宇宙的最佳方式?為什麼我們會看到與古典力學規則十分近似的現實萌現?這些問題都完全值得重視——不過在堅定支持多世界詮釋的人士看來,這些問題也是充分可以回答的。

從整體全貌角度來看,這段討論有兩點必須記得的重要事項,一項是即便我們對量子力學並沒有最完備的認識,然而我們所知的部分當中,完全沒有哪種事項必然傾覆決定論(未來只會從出於現在)、實在論(存有客觀真實世界)或物理主義(世界純具物理性)。這些牛頓派/拉普拉斯派規律運作宇宙的諸般特徵,在量子力學中依然很容易就能全都成立——不過我們並不完全確定。

-----廣告,請繼續往下閱讀-----

另一項必須記住的重點是,量子力學所有詮釋的共同特徵:我們觀看世界時眼中所見,和我們不觀看世界時對於世界的描述方式是相當不同的。隨著人類的知識在過去幾世紀以來已經有所進展,我們偶爾也會被迫大幅重新組構我們的信念行星,好納入對實體宇宙的嶄新格局,而量子力學肯定有資格成為那幅格局。就某種意義來講,這就是終極統一的成果:現實的最深層級並不包含「海洋」和「山脈」一類的事物,不過還不只於此,它甚至也不包含「電子」和「光子」一類的事物;它只有量子波函數。其他一切都是方便談論的說法。

  • 本篇選自本書第 21 章

 

本文摘自泛科學2017年11月選書《詩性的宇宙:一位物理學家尋找生命起源、宇宙與意義的旅程》,八旗文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1254 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
從太陽發光到生命突變,一切都歸功於量子穿隧效應?
PanSci_96
・2024/10/19 ・1957字 ・閱讀時間約 4 分鐘

在這個充滿光與生命的宇宙中,我們的存在其實與一種看不見的力量密切相關,那就是量子力學。沒有量子力學,太陽將不會發光,地球上的生命將無法誕生,甚至整個宇宙的運行規則都會截然不同。這些微觀層次的奧秘深深影響了我們日常生活的方方面面。

其中,量子穿隧效應是一個看似違背直覺但至關重要的現象,從太陽的核融合反應到基因的突變,這種效應無處不在,甚至還牽動著當今的高科技產業。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子穿隧效應?

我們可以將量子穿隧效應比作一個奇妙的穿牆術。想像一下,你身處一個被高牆包圍的城市,牆外是未知的世界。通常,如果你要越過這道牆,需要極大的力量來翻越它,或者用工具打破它。然而,在量子的世界裡,情況並不如此。

在微觀的量子力學世界中,粒子同時具有波的特性,這意味著它們並不完全受限於傳統物理的規則。當一個微觀粒子遇到能量障礙時,即使它沒有足夠的能量直接穿過障礙,卻仍有一定機率能出現在障礙的另一邊,這就是「量子穿隧效應」。粒子彷彿直接在牆上挖了一條隧道,然後穿越過去。

-----廣告,請繼續往下閱讀-----

這聽起來像魔法,但它背後有深刻的物理學道理。這個現象的發生取決於量子粒子的波動性質以及能量障礙的高度和寬度。如果障礙較矮且較窄,粒子穿隧的機率就較高;反之,障礙越高或越寬,穿隧的機率則會降低。

太陽發光:核融合與量子穿隧效應的結合

量子穿隧效應的存在,讓我們能夠理解恆星如何持續發光。以太陽為例,太陽內部的高溫環境為核融合反應提供了所需的能量。在這個過程中,氫原子核(質子)需要克服極大的電磁排斥力,才能彼此靠近,進而融合成為氦原子核。

然而,單靠溫度提供的能量並不足以讓所有質子進行核融合。根據科學家的計算,只有約10的 434 次方個質子中,才有一對具備足夠的能量進行核融合。這是一個極小的機率。如果沒有量子穿隧效應,這種反應幾乎不可能發生。

幸好,量子穿隧效應在這裡發揮了關鍵作用。由於量子粒子具有波動性,即便質子沒有足夠的能量直接跨越能量障礙,它們仍然能透過穿隧效應,以一定機率克服電磁排斥力,完成核融合反應。這就是為什麼太陽內部的核融合能夠源源不斷地發生,並且持續產生光與熱,讓地球成為適合生命生存的家園。

-----廣告,請繼續往下閱讀-----

量子穿隧效應與生命的演化

除了恆星的發光之外,量子穿隧效應還對生命的誕生和演化起到了關鍵作用。地球上物種的多樣性,很大一部分源於基因突變,而量子穿隧效應則幫助了這一過程。

DNA 分子是攜帶遺傳訊息的載體,但它的結構並不穩定,容易在外界因素影響下發生變異。然而,即使沒有外界因素的干擾,科學家發現 DNA 仍會自發性地發生「點突變」,這是一種單一核苷酸替換另一種核苷酸的突變形式。

量子穿隧效應讓氫原子隨時可能在 DNA 結構中進行位置轉換,從而導致鹼基對的錯位,這在 DNA 複製過程中,可能會引發突變。這些突變若保留下來,就會傳遞給下一代,最終豐富了基因與物種的多樣性。

量子穿隧幫助促進 DNA 突變,協助生命的演化與物種多樣性。圖/envato

半導體技術中的量子穿隧效應

除了在宇宙和生命中發揮作用,量子穿隧效應還影響著我們的日常生活,尤其在現代科技中。隨著半導體技術的發展,電子設備的體積不斷縮小,這也讓電子元件的性能面臨更大的挑戰。

-----廣告,請繼續往下閱讀-----

在微小的電子元件中,量子穿隧效應會導致電子穿過元件中的障礙,產生不必要的漏電流。這種現象對電晶體的性能帶來了負面影響,因此設計師們需要找到方法來減少穿隧效應的發生,以確保元件的穩定性。

雖然這是我們不希望見到的量子效應,但它再次證明了量子力學在我們生活中的深遠影響。設計更有效的半導體元件,必須考慮到量子穿隧效應,這讓科學家與工程師們需要不斷創新。

量子力學是我們宇宙的隱藏力量

量子穿隧效應看似深奧難懂,但它對宇宙的運作和生命的誕生至關重要。從太陽的核融合反應到基因突變,甚至現代科技中的半導體設計,量子力學影響著我們生活的方方面面。

在這個充滿未知的微觀世界裡,量子現象帶來的影響是我們難以想像的。正是這些看似不可思議的現象,塑造了我們的宇宙,讓生命得以誕生,科技得以發展。當我們仰望星空時,別忘了,那閃耀的光芒,背後藏著的是量子力學的奇妙力量。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1254 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1254 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。