0

0
0

文字

分享

0
0
0

向毛蜘蛛的「非常好色」學習

彭 琬馨
・2016/06/17 ・2464字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

如果我們的油漆不再需要有機色素的調配,而是以仿生學中、模仿毛蜘蛛非炫彩藍色的奈米結構製作?

「這個計畫結果如果發表,可能未來三五年內,就有機會把這些非炫彩的結構色,用工業方法大量做出來商品化。」採訪這天是 美國時間 4 月 25 日晚上十點,距離熊柏凱在 experiment.com 網站提出的募資科學實驗計畫,還有幾天就要截止。

1

先從顏色講起:結構色與色素色大不同

若非科班出身,要了解「非炫彩結構色」這幾個字可能比讀天書還難,不過開啟話題前,先來說說大自然中的顏色到底怎麼來。

自然界色彩產生的途徑有兩個主要來源:一為色素色、另一為結構色。油墨、染料這類物質的顏色之所以能被眼睛看見,是因為色素選擇性吸收某些特定波長的光,再將剩餘顏色光線反射/散射回觀察者眼中,在此同時材料也因為不斷吸收光線能量,導致物質分子鏈結被破壞,最後材料逐漸褪色,這類色彩產生原理就稱為「色素色」。

color-fan-541624_640
印刷出來的顏色屬於色素色。圖/stux@pixabay

另一種結構色就不同了,它指那些不是經由化學染料,而是光學上、小於一微米之間的內部物理結構,對光線頻譜波長引發散射、繞射或衍射等作用,進而影響肉眼接收到的色彩光波、造成閃爍效果的顏色。自然界中許多昆蟲、蝴蝶、鳥類羽毛的顏色,就是透過這種方式產生。

peacock-feathers-1463985998YT3
孔雀羽毛的顏色屬於結構色的代表。圖/Michelle Daigle@PublicDomainPictures

由於不同結構、光線進入方式與觀看角度,都會影響顏色變化,科學家希望找出這類生物改變色彩的方式,模擬應用在材料製作上(參考:孔雀羽毛為何特別明亮)。最簡單的例子是大家錢包中金融卡/信用卡背後的雷射標籤,就是利用雷射在原本透明的塑膠(或反光材質)上打洞,影響光線行進方向才產生顏色不停變化的結果。

仿生學:向大自然拜師學藝

像這類模仿生物體特質、「對大自然合法抄襲的學問」就稱為仿生學( Biomimicry/ Biomimetics ),從 1958 年美國史提爾(J. E. Steele)少校提出至今,已經有非常多相關的應用研發(參考:仿生-以自然為師的科學),這個學門的應用研發其實遍布日常生活(受鬼針草啟發的魔鬼氈就是最好的例子),只是我們通常身在其中而不自知。從色彩的角度來說,生物體結構色的原理是仿生學可以效仿的對象,透過模擬生物體上色彩產生的構造,就可以相對應的做出結構色鮮豔的色彩效果,不過最大的問題在於結構色的「炫彩現象」(Iridescent)。這是由於生物體身上的奈米結構不是平坦的,當光線進入時,只能在某個視線範圍內反射單一色彩(參考:大藍閃蝶上的耶誕樹結構),相對侷限了結構色應用的範圍。

26250188681_1314813b85_o
熊柏凱於TEDxUniversityofAkron上的演講。圖中的投影片,正在說明大藍閃蝶翅膀上特殊的結構可反射出藍光,而人類模仿這樣的結構精進了許多高科技技術。圖/熊柏凱提供。

3D列印 重現蜘蛛非炫彩結構色

「炫彩現象是限制結構色在日常生活應用一個很大的因素,通常我們不希望顏色一直改變」,鑽研仿生學多年、目前在美國艾克朗大學就讀的熊柏凱,研究主題很特別,他從具有鮮豔藍色的毛蜘蛛身上,找到特殊的多層膜奈米結構。

「我們發現不但所有毛蜘蛛都是相同的藍色,角度改變也不會讓顏色有所變化」, 他提到這個發現,興奮不已,因為這有可能擴大結構色過去使用範圍。他在實驗中假設,如果能將這個多層膜結構用 3D 列印方式做出來,就可以「用工業方法主動複製出簡單結構」,讓毛蜘蛛身上這種非炫彩現象進一步商品化。

有機藍色染料 在自然界中難合成

不只非炫彩的結構色在自然界中難以尋覓,這種毛蜘蛛還有一個特點讓牠與眾不同,「有機藍色染料在自然界中稀少又難以合成」,經過多方研究熊柏凱發現,這種毛蜘蛛至少經過八次獨立演化,身上的奈米結構從未在其他藍色物種中發現,也因此讓這種接近 450奈米、正負十奈米間的鮮艷藍色,成為毛蜘蛛身上的獨到特色。

1 (1)
毛蜘蛛。圖/Michael Kern, www.thegardensofeden.org

研究過程 關關難過關關過

熊柏凱研究毛蜘蛛多年,過程中辛酸血淚兩隻手都數不完,光是為了找出適合研究的品種與顏色,就耗上一年半載;接下來還得進一步分析毛蜘蛛身上奈米結構的規律。「仿生學最精華的部分就是我們如何從這麼多的物種中找出共同特性」,為了蒐集足夠樣本進行研究,熊柏凱心中早有張門路清單,知道哪裡能以經濟實惠的價格,買到稀少又昂貴、品質卻有保證的毛蜘蛛。

26316332645_db7ee5faf3_o
圖中最左邊的就是這次的受訪者熊柏凱博士。圖/熊柏凱提供

「如果能以結構色取代有機染料,只要少數幾個材料就能做到很多顏色,加上結構色不會褪色的特點,還能長久使用!」雖然這些優點並非一開始的研究動機,但說起自己的研究,熊柏凱有滿滿的自信。即便研究的只是毛蜘蛛身上一個非常渺小、看似不足為奇的結構組織,卻有可能為未來世界的色彩帶來天翻地覆的改變。

文章難易度
彭 琬馨
32 篇文章 ・ 0 位粉絲
一路都念一類組,沒什麼理科頭腦,但喜歡問為什麼,喜歡默默觀察人,對生活中的事物窮追不捨。相信只要努力就會變好,相信科學是為了人而存在。 在這個記者被大多數人看不起的年代,努力做個對得起自己的記者。


0

0
0

文字

分享

0
0
0

母體的免疫特區:為什麼子宮不會排斥胎兒?——《我們為什麼還沒有死掉?》

麥田出版_96
・2021/10/22 ・2258字 ・閱讀時間約 4 分鐘

• 作者/伊丹.班—巴拉克
• 譯者/傅賀

說來奇怪,人們早在十七世紀就開始嘗試輸血了。當然,最初人們並不瞭解血型或關於血液的其他基本事實,但他們已經開始把血液從一個人的身體輸到另一個人的身體裡,事實上,這無疑等於謀殺(現在眾所周知的 ABO 血型劃分是從一九○○年開始的)。

人們嘗試了各種類型的實驗和手段:把一隻動物的血輸進另一隻動物,把動物的血輸進人體,把一個人的血輸進另一個人體內,等等。

說得客氣一點,結果有好有壞,不過,在出現了一、兩例死亡事件之後,法國立法禁止了輸血。在接下來的一個半世紀裡,輸血幾乎銷聲匿跡。到了十九世紀,這項操作又重新引起了人們的興趣。時至今日,只要確保血型匹配,輸血就是安全的。

時至今日,只要確保血型匹配,輸血就是安全的。圖/Pixabay

這就是血液的情況。相對來說,輸血比較簡單,但是要在人與人之間移植其他細胞或組織,就困難多了。隨著移植技術的進步,人們可以從供體那裡接受心臟、腎臟、肝臟,以及其他器官,但是受體會出現排斥。受體的免疫系統會馬上識別出一大塊外來物質進入了身體,並試圖反抗。即使移植的器官來自最匹配的供體,受體患者也需要接受免疫抑制藥物治療,來緩解它們對「入侵器官」的免疫排斥。通常來說,人體並不會輕易接納外來物質——在上一章裡,我描述了人體不接納它們的一些方式。

但是,即便我們知道了這些事實,直到一九五三年,才有人試著來認真思考懷孕這件事:在十月懷胎的過程中,孕婦可以跟肚子裡的孩子和平相處,似乎沒有什麼負面效應。顯然,孩子並不是母親的簡單複製品,他們的免疫組成也不盡相同——因為胎兒有一半的基因來自父親,因此遺傳重組之後產生了一個明顯不同的新個體。

所以,問題是,母親如何容忍了體內的另一個生命呢

我們的生殖策略(即「用一個人來孵育另一個人」)裡有許多未解之謎,這不過是其中一個較不明顯並且格外難解的問題而已。事實上,即使在今天,我們也不清楚孕婦容忍胎兒的生理機制。我們知道,母親依然會對所有其他的外來物質產生免疫反應,我們也知道胎兒並沒有與母親的免疫系統在生理上完全隔離,受到特殊庇護。貌似孕婦與胎兒的關係裡有一些特殊而且非常複雜的事情。

孕婦與胎兒的關係裡有一些特殊而且非常複雜的事情。圖/Pexels

這可能早在受精之初就開始了。從那時起,母親的身體就開始逐漸習慣父親的基因。在懷孕的早期,發育中的胚胎就與母親的子宮開啟了複雜的對話。胚胎不僅躲在胎盤背後來逃避母親的免疫反應,而且還分泌一些分子用來針對性地防禦母親的免疫細胞,因為後者更危險。母親的自然殺手細胞和 T 細胞在胎盤外盤旋,但是它們並不是為了殺死胚胎細胞,而是轉入調控模式,開始釋放出抑制免疫反應的訊號,並確保胚胎安全進入子宮(同時促進胚胎的血管生長,這對胎兒來說是好事)。同時,胚胎細胞也不會表達第一型主要組織相容性複合體分子,以逃避免疫監視(有些感染病毒也使用這種策略來逃避免疫監視和攻擊)。此外,母親的免疫系統接觸胎兒的蛋白質並開始學著容忍它們。

除此之外,母親的免疫系統也會受到廣泛且微妙的抑制——但不嚴重,因為孕婦仍然能夠抵禦感染。整個免疫系統會下調一級。這也是為什麼有些女性的自體免疫疾病在懷孕期間會有所緩解。

目前我們的理解是這樣的:在不同類型的細胞和訊號的作用下,子宮成了免疫系統的特區(其他免疫特區還包括大腦、眼睛和睪丸),更少發生發炎。胚胎與母親的免疫細胞會進行活躍的對話,它們能在整個孕期和平相處。

在不同類型的細胞和訊號的作用下,子宮成了免疫系統的特區,更少發生發炎。圖/Pexels

當然,這個過程可能會出錯,而且偶爾也的確會出錯。當出現問題的時候,母親就會對胎兒發生免疫反應。在極端的情況下,這可能會導致女性不孕。在懷孕的早期,它可能會引起自然流產;在懷孕後期,這可能會引起一種叫作「子癇前症」的發炎反應,對母子都非常危險。

最後,說一件有點詭異的事情:胚胎細胞有辦法從胎盤中游離出去,進入母親的血液系統。

之前有理論認為,這也許是為了下調母親的整個免疫系統,使它對胎兒的出現做足準備,這可能也是母嬰對話的一部分。但是,最近幾年,研究者發現事情可能沒有那麼簡單:有些胚胎細胞即使在分娩之後仍然在母親的血液裡逗留——事實上,可以在分娩之後存活數年,從免疫學的角度看,這真說不通。研究者發現,它們會出現在母親的許多組織裡——包括肝臟、心臟,甚至大腦——它們可以發育成熟,變成正常的肝臟、心臟或是腦細胞,留在母親體內。讓我再說一遍:由於我妻子生了我的孩子,她體內和大腦裡的一些細胞現在也有我的基因了。這被稱為母胎微嵌合。目前沒人知道為什麼會這樣。

——本文摘自《我們為什麼還沒有死掉?》,2020 年 9 月,麥田出版

麥田出版_96
1 篇文章 ・ 3 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策