0

0
0

文字

分享

0
0
0

想在愛情裡取勝?先算情敵告白的機率吧!

賴 以威
・2016/06/10 ・3157字 ・閱讀時間約 6 分鐘 ・SR值 468 ・五年級

機率量化了「可能性」

機率是數學中最生活化的數學單元,也是不少人覺得就算三角函數學爛了,也可以扳回一城的地方。

我們每天都接觸到各種「可能」,用數學一點的話來說就是接觸到各種「機率」。許多機率很簡單,用經驗培養出來的直覺便能處理:丟骰子出現任何一點的機率相等(1/6)。用味覺來譬喻,這類的機率像喝可樂,一口下去清涼暢快。但生活中不只有可樂,還有咖啡這類味道豐富多層次的飲品。不同豆子酸、苦、甘程度;木質、柑橘、泥土的香氣,只有受過訓練或天賦異稟的人才能察覺出箇中微妙的差異。同樣地,面對複雜事件,直覺很難正確評估對應的可能性,這時,你就需要機率的數學訓練了。

請想像這樣的小劇場,主角是世杰,以及他的暗戀對象班昭。

找出可能的情敵

spokes-21207_640

§

六月,T 大校園裡瀰漫期末考的氛圍,總是熱鬧、動不動遇到熟人的廣場此刻靜悄悄,一台腳踏車經過,碾到鬆脫的地磚,發出框隆聲響。

「變態筋肉男。」

「偷看陌生人臉書的人才變態。」

「打赤膊的自拍照還設公開,檢舉色情相片。」

世杰與孝和坐在陰涼處吃霜淇淋,世杰滑著手機看到筋肉男剛在班昭最愛的咖啡廳打卡,。班昭是世杰修跨校課程認識的 N 大女孩,兩人偶爾一起去看電影、喝咖啡,一切都很好,但也僅止於很好。世杰不敢跨出告白的那條線,理由很簡單:班昭太受歡迎了。

N 大有一則校園傳說:在校園祭典當天可以「光明正大的告白」。這一天,班昭宿舍門口排隊的人潮,一度讓路人以為熱門日本連鎖餐廳進駐宿舍。

「排隊這件事一做就沒勝算了。你看過白馬王子排隊去拉長髮公主頭髮,或拎玻璃鞋去試灰姑娘的尺寸嗎?」

世杰的理論是:愛慕者跟種性制度一樣有階級區分:只能遠望,偶爾在夢中說上一句話就開心到半夜失眠的後援會階級;被女孩叫得出名字,在路上遇到會打招呼但也僅止於打招呼的「再聊下去我就要說先去洗澡囉」階級;還有一起念書、互相用 LINE 傳有趣文章的最高階級。

根據世杰近乎變態地小數據分析班昭臉書,他發現除了自己,還有兩位同樣在最高階級的對手——姑且稱為筋肉男與真文青。

情敵告白機率怎麼算?

pexels-photo

§

「想去小昭的愛店想來個不期而遇嗎?他不知道這樣一打卡,所有人都不想去了嗎?」

竟然自行幫對方取暱稱了,孝和在心裡咋舌。

世杰氣呼呼說:「我肯定,他跟真文青至少有一個喜歡小昭。」

「別人喜歡你的女神,有這麼重要嗎?」孝和不以為然地問

「當然!雖然小昭喜歡他們任何一個人的機率都很低,比方說 1/10。但倘若兩個人都告白,小昭都拒絕的機率是 (1-1/10) × (1-1/10) = 0.92 = 81%。要是這種人有 N 個,都拒絕的機率是 0.9N,給定 N=10,都拒絕的機率低到只剩 35%,不是很危險嗎!」

浪漫的告白在世杰的描述下,彷彿變成了戰爭畫面,一群男子前仆後繼用告白作為武器,「小昭城」岌岌可危。孝和聽了只好安慰世杰:

「往好的方面想,現在 N=2。而且,真文青跟筋肉男同時喜歡班昭的機率只有 1/3。也不會太高。」

「1/3?數學天才你在說什麼?」

世杰露出不解的神情。剛認識孝和,世杰就覺得他的名字很眼熟,逛書店看到《超展開數學教室》,才想起以前翻過這本書,是講孝和的高中故事。「人生好端端的幹嘛跟數學有這麼多牽扯。」這是他當時的心得。沒想到上大學後認識書中主角,自己也漸漸受到影響,越來越有「數感」。

孝和舔掉霜淇淋融化的下緣,開始解釋:

「我們用喜歡 = O,不喜歡 = X 來表示(筋肉男,真文青)對小昭的狀態——」

「小昭是你叫的噢。」

孝和不理會世杰繼續說:

「至少有一個人喜歡,所以共有 (O,X)、(X,O)、(O,O) 三種狀況,最後一種是兩人都喜歡你的小昭昭。假設兩個人喜歡小昭的機率都是 1/2,且是獨立事件,則三種狀況的機率均等,所以各佔了 1/3,跟丟只有三面的公平骰子一樣。」

「只有 1/3 嗎?我還以為是 1/2,真怪。」

世杰搔搔頭,兩人起身回系館繼續準備期末考。六月的陽光用力打在皮膚上,走沒幾步,霜淇淋的冷卻效果失效,從後面望去,他們的背部濕了一大塊。

一個情敵告白失敗,戰局一下就變了

feet-984260_640

§

入夜後沒有變得涼爽,柏油路吐出白天儲存的熱氣,孝和跟世杰踩在上頭,走向 T 大後門的簡餐店。

「噢噢噢!爽啦,考前還告白,妨礙準備考試的人會被馬踢,活該失敗。」

世杰大叫,孝和湊過去看他的手機,發現小昭在臉書上隨手以張街景搭配文字,發了一則新的動態:

「或許,只有謝謝是不夠的。但在這個時刻,也只有謝謝。」

他們兩個立刻明白有人告白被拒絕了,不知道是筋肉男還是真文青。

「謝謝卡二連發,哈哈。」

世杰開心的不得了,明天考試怎樣都無所謂了的樣子。一旁孝和潑冷水:

「這下子,另一位對手喜歡小昭的機率從 1/3 提升到 1/2 了。」

「為什麼?!你剛不是說筋肉男跟真文青同時喜歡小昭的機率是 1/3,為什麼一個告白了,會影響到另一個對手喜歡的機率?」

孝和用問題來回答世杰的問句:

「你記不記得高中機率有兩道題目:

已知某家有兩個孩子,且至少有一個兒子。求兩個都是兒子的機率?

已知某家有兩個孩子,登門拜訪,開門的是兒子,求兩個都是兒子的機率?」

兩人走進簡餐店,被冷氣冰鎮過的空氣迎面而來。世杰想也沒想就回答

「第一題是 1/3,第二題是 1/2。」

「為什麼第二題是 1/2?」

「廢話,生男生女的機率各一半且各自獨立。所以另一個是男生的機率就 1/2 啊。」

「那為什麼第一題是 1/3?」

「就像你剛剛列的,有三種狀況 (男,女)、(女,男)、(男,男)——」

世杰閉嘴,他意識到「兒子女兒問題」和「告白問題」在數學上是一樣的。孝和解釋

「不管筋肉人或真文青,只要有人告白就增加了新資訊。」

孝和頓了頓

「來看看 (筋肉人,真文青) 的三種感情狀況,原本 (O,X)、(X,O)、(O,O) 的機率都相等,新資訊會讓 (O,O) 的機率提升。你想想,『一個人喜歡的前提下,有人告白』跟『兩個人喜歡的前提下,有人告白』,哪個機率比較大。」

世杰伸出手比了個2,臉上的迷霧依然沒褪去。

「假如告白的是筋肉男,就是 (O,X)、 (O,O) 這兩種狀況。如果是真文青告白,就是 (X,O)、(O,O)。不管是誰告白都有兩種可能的狀況,而且 (O,O) 都重複出現在其中,所以是 (O,O) 的機率是 1/2。」

「還是高中那種解法,直接男生女生的出生機率各是 50% 最簡單了。」世杰放棄思考。

那樣的解法固然沒錯,但當兩個問題排在一起看,就得被迫用不同解釋方法。孝和的老師雲方說過,數學很柔軟,很有彈性,一個問題可以從不同角度切入,大家常只看某個角度誤以為自己會了。

「唯有從不同角度切入都能理解,才算是真的理解。」

算了,反正期末考也不會考這個,孝和把以前老師的話暫時放到一邊,不打算繼續跟世杰解釋。他說:

「比起煩惱潛在對手多不多,不如想想自己該怎麼努力吧。」

或許是一連串的機率討論,孝和腦海裡忽然浮現了一個想法:

「你要不要用數學設計一場浪漫的告白?」

「嘎?」

文章難易度
賴 以威
32 篇文章 ・ 8 位粉絲
數學作家、譯者,作品散見於聯合報、未來少年、國語日報,與各家網路媒體。師大附中,台大電機畢業。 我深信數學大師約翰·馮·諾伊曼的名言「If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is」。為了讓各位跟我一樣相信這句話,我們得先從數學有多簡單來說起,聊聊數學,也用數學說故事。 歡迎加入我與太太廖珮妤一起創辦的: 數感實驗室

0

2
2

文字

分享

0
2
2
【成語科學】運籌帷幄:古人不用筆算數學?一隻小竹棍居然可以開三次方根、解方程式!
張之傑_96
・2023/07/28 ・1261字 ・閱讀時間約 2 分鐘

劉邦(漢高祖)打敗項羽,取得天下,建立漢朝。一天舉行盛大宴會,他問群臣:「我為什麼會勝?項羽為什麼會敗?」群臣都說劉邦善於用人,項羽恰恰相反。劉邦點頭稱是,司馬遷在《史記‧高祖本紀》記下劉邦說的一段話

夫運籌帷幄之中,決勝於千里之外,吾不如子房。

帷幄,指營帳子房,是張良的字籌,指算籌,是古時的運算工具。這段話的意思是說,張良在營帳中運用算籌計算,就能決勝千里之外,這方面我(劉邦)不如張良。因此,這個成語的原意是在營帳中策劃謀略,後來泛指謀劃或指揮。讓我們造兩個句吧。

要不是孔明運籌帷幄,劉備哪有三分天下的機會!

在里長的運籌帷幄下,為社區更新取得有利的條件。

不用筆,那用什麼?

成語的出典說了,句子也造了,接下去就要談談這個成語的科學意義。我們現在演算數學,都是用筆在紙上運算,也就是筆算。古人呢?古人從來不用筆算,而是使用工具運算。元代以前使用算籌,元代以後使用算盤

算盤一直使用到 1980 年代,小朋友家裡可能還有。至於算籌,只有少數博物館裡才能看到。

國立自然科學博物館內藏的漢朝骨製算籌複製品。圖/wikipedia

其實算籌只是一根根小竹棍,外形和筷子差不多。小朋友千萬不要看輕這些小竹棍,中國古代的數學曾經輝煌一時,就是用這些小竹棍運算出來的。

驚人的運算能力 曾經輝煌一時的數學成就

算盤被木框框住,計算能力受到限制。凡是算盤能算的,算籌一定能算。反過來,算籌所能算的,算盤就不見得勝任。算盤主要是生意人用的,算籌可作各種運算,數學家喜歡用它。中國的數學宋代發展到顛峰,元代以後不進反退,到了明代已沒人懂得宋代的數學了。

算籌平時放在算袋裡,繫在腰上,運算時取出,在席子上或桌子上擺弄。除了加減乘除,還能開平方、開立方,甚至解高次方程等高中才學得到的數學!關於算袋,有個小故事,傳說秦皇島東巡時,把算袋扔到海裡,變成了烏賊,所以烏賊又稱算袋魚。

十四世紀朱世傑《四元玉鑒》中的「古法七乘方圖」,紀錄宋代展出的「楊輝三角形」,就是我們現在所說的「巴斯卡三角形」。圖中一根根長條物就是當時用來計算的「算籌」。楊輝三角形的產生也顯見宋代數學已經發展出高次多項式的乘法。圖/wikipedia

數學家用算籌運算時,有時擺弄得極快,不要說外行人,連內行人的眼睛幾乎都跟不上,所以古人用「運籌如飛」來形容。因此,用算籌運算,運算過程不會留下記錄,一陣擺弄之後,最後得出答案。這對一般才質的人來說,學起來的確有點困難。

張之傑_96
103 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

3

2
2

文字

分享

3
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 3
天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 615 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。