0

0
0

文字

分享

0
0
0

核廢料放我家真的沒有問題嗎?──《怕輻射,不如先補腦》

時報出版_96
・2016/05/30 ・2278字 ・閱讀時間約 4 分鐘 ・SR值 554 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

「核廢料放你家」是一種早期核能論辯中的大絕招,意思就是說「要是你敢把核廢料帶回家堆放,我就相信你說核能很安全」。

通常這種話是完全沒有任何意義的,因為不管我想不想把核廢料帶回家,就現行法規而言都是做不到的,所以嗆出這句話叫做「進可攻、退可守」,因為對方要是不敢承諾帶回家,那麼就可以全盤否定他前面的論述;要是他反嗆「放我家就放我家」,他也做不到,你就可以噓他講空話,不愧是大絕招中的大絕招。不過話說回來,假設法令規定可以把自己的發電廢料帶回家,核廢料帶回家會發生什麼事情?

1200px-WendlandAntiNuclearProtest7
核廢料的處置在台灣一直是個難以解決的問題。圖/wikimedia commons

「核廢料放你家」這個概念其實是建立在另一個叫做「核廢料不能處理」的錯誤觀念上,一般人想像得到的核廢料,大概就是滿坑滿谷的鏽蝕鐵桶堆在某個空間,然後如果鏽蝕過度就可能會破洞、漏東西出來造成土壤汙染,最後導致寸草不生、萬物死絕。

事實上,核廢料處理並不是這麼一回事。首先我們要理解的是,所謂的「核廢料」或者「放射性廢棄物」主要可以分為「低階放射性廢料」與「乏燃料」兩種。「低階放射性廢料」多半來自一些放射性作業、醫療輻射廢棄物、實驗用輻射廢棄物等,它們和核電廠燃料的關係比較小,任何有核子業務的先進國家,就算沒有一台核能發電機也會產生相關的廢料,這些廢料通常會先把它壓縮成小小的,再用水泥包裹起來,防止輻射外洩。另外一種「乏燃料」,則是貨真價實和反應爐有關的東西,它是經過核衰變、發過電之後所剩下來的東西,具有高放射性,但是活度不足以再有效率地發電,所以過去是稱之為「高階核廢料」,不過近年來一些正在發展的技術,正試圖讓這些「乏燃料」重生,讓它們能夠再次拿來發電,那又是另一個故事了。

如果我今天想要把核廢料帶回家,那麼依據比例原則,我只把自己用過的核廢料帶回家應該是合情合理的吧!假設一個人一生的用電量是72 萬度電,而且這些電全部都來自於核能發電的話,以目前的核廢料減容技術每度電0.9 微升來算,他的廢料大小將高達648 立方公分!好⋯⋯小啊,比寶特瓶裝的汽水大一點點。好吧,小歸小,它還是得有屏蔽,因為如果你把這個鋁罐大小的核廢料直接堆在家裡的某處,每個人都不敢靠近那個地方了,所以我們必須使用金屬加上混凝土做一個「家用乾儲桶」進行輻射屏蔽,讓乾儲桶外部的輻射劑量符合「每年不得超過0.25 毫西弗」的輻射防護法規,這個前提之下,完全是可以高枕無憂的。所以說,「核廢料放你家」本身是一個利用無知恐懼所製造出來的假議題,只要法規鬆綁,在輻射安全兼顧的前提之下,核廢料當然可以放我家。

怕輻射,不如先補腦(第204頁)

我們身為在放射線科工作的人,自己也是核廢料生產者。包括核子醫學科的各種放射線藥劑、放射腫瘤科用來治療的放射性金屬,只要醫院每天開著,核廢料就一直產生,你問我可不可以不要產生核廢料,當然可以!不要診療病人就可以了。事實上在核子醫學科裡一些藥劑所使用到的核種是來自於核反應爐的,像是「鎝-99m」的原料「鉬-99」就是從鈾的核分裂所得來的,如果我們致力於消滅核反應爐,也就幾乎等於消滅自己的性命,因為很多疾病將再也無法診斷了。

對一個科學家來說,所謂的「正反兩面」並不是等重的。有些人會說:「雖然你提的這些東西有科學證據,但是也有人說如何如何如何。」這種似是而非的話很容易把不了解的人誘導到所謂的「兩種意見都很重要」或是「兩邊一樣爛」的邏輯,完全是思考上的陷阱與盲點。事實上,在科學的領域中,我們不能只看單一研究的結果,必須要從數以萬計的研究論文中,以客觀的角度抽絲剝繭才能歸納某個特定現象可能的面貌,這也就是為什麼我們通常認為國際性大組織所提出的報告較為可信,因為那些報告都是全世界最專精的專家學者,埋頭檢視現有的科學證據所整理出來的結論。

然而,你總是會找到若干和所謂的「主流學界」不同的觀點,因為科學的世界是自由的,任何人都可以提出自己的假說,然而,一個假說最後是成為學說或是廢紙,關乎這樣的假說是否能在其他人手中無限制地重複,而那些冷僻的假說多半是無法重複的。因此,正反意見未必能夠等重地放在天平的兩端,做為一個非專業領域者更應該要小心這點,所謂的客觀並不是躲在「各打五十大板」的背後偷渡錯誤資訊,而是依照證據「有罪責百、無罪開釋」,這才是科學的態度。

放射線的缺點,感謝各大媒體經常報導,連一般民眾都已非常了解。幸運的是,時至今日,經過了無數的科學實驗以及一些核子事故的經驗,我們已經非常了解放射線,好比說輻射劑量對我們的健康有怎麼樣的影響、要怎麼防護才能讓我們安全無虞、哪些東西會自己產生放射線、可以用怎樣的方法自己生產放射線,這些問題幾乎都是有解的,最關鍵的是,我們需要專家來處理這些問題,而不是一些煽動式的民粹口號。

只要封裝合乎法定標準,就算是核廢料也不會對人體有害。


 

 

最受大家__的台灣鯛民來啦!

.只要是插電或裝電池的東西都有輻射?
.微波爐加熱的食物吃了容易致癌?
.用手機上網的人容易腦殘?

本書以輕鬆有趣的方式講述有關輻射與放射線的基本知識,各篇均輔以幽默插圖和清晰易懂圖表,讓讀者對日常生活中與輻射相關的事物能有正確的認識,並能因了解真相而得以安心。

怕輻射不如先補腦》,時報出版

文章難易度
時報出版_96
156 篇文章 ・ 30 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

2

3
1

文字

分享

2
3
1
核二退場,核廢料還要放 20 年!又該何去何從?
PanSci_96
・2023/03/28 ・2622字 ・閱讀時間約 5 分鐘

核二廠已經在 3 月 14 日正式退役,完成 40 年的發電任務;但你知道嗎?還得要再花 25 年,才能完成全部的退役工作。

而高階核廢料 -9620 束的核燃料棒,依照國際原子能總署(IAEA)建議,需要在遠離人類的地方儲存 20 萬年,然而它們至今仍留存在核二廠內,無處可去。

核廢料該何去何從? 安全嗎?其他國家又是怎麼處理的呢?再者,難道核廢料不能再利用嗎?

核廢料該去何處

相比於其他發電方式,核能發電要退場可不簡單;未來 25 年的旅程中,包含 8 年的停機觀察、12 年的拆除,以及 5 年的觀察及復原階段。在漫長的退役過程中,除了審慎評估核污染的狀況以外,衍生出的核廢料去留,更是大家最關心的事情。

核能發電過程中,所產生的放射性廢棄物主要分兩種:半衰期長,以鈾、鈽、超鈾元素為主的燃料棒,屬於高階核廢料;其餘的核廢料,都屬於低階核廢料,像是發電廠使用的機具和產生的廢液,廠區內受污染的衣物、手套、紙張等。

而存放在蘭嶼「低放射性核廢料貯存場」的,並非是那些處理起來最棘手的燃料棒。實際上,不論是核一廠還是核二廠,真正的高階核廢料現在都正躺在燃料池內。當然,那裡不會是高階核廢料最後該待的地方,只是因為種種因素,導致下一階段的乾式儲存場遲遲未能啟用;核二廠甚至在 1991 年和 2003 年調整、擴充核電廠內的燃料池,才勉強塞進所有燃料棒。現在燃料池內擁擠的情況,一號機最後一批燃料棒甚至因為燃料池空間不足,至今仍卡在反應爐內,無法退出。

蘭嶼貯存場是臺灣唯一的核廢料貯存場。圖/維基百科

雖然不會爆炸,但是放在地表的核燃料棒,真的沒有輻射的風險嗎?在討論輻射量時,除了半衰期外,還要考慮不同元素在衰變時產生的能量大小。高階核廢料中,大約有 95% 是輻射量低,半衰期 45 億年的鈾 -238 與鈾 -235,而在剩餘材料中輻射較強的,是大部分不存在於自然界,因為核反應才誕生的人工產品超鈾元素。例如錼 -237、鈽 -239、鋂 -243 與鋦 -247,這些超鈾元素衰變時產生的輻射能量較大,半衰期也較長,是比較需要警戒的對象。

那這些高階核廢料究竟該到哪呢?根據國際原子能總署(IAEA)對於核廢棄物的管理規範,儲存核廢料時不只應考慮到對人類,還要同時考慮對環境的影響,盡可能減少廢棄物的總量,並確保最終處置場所的安全性。

台灣參考其他國家作法,燃料棒首先會在燃料池內以濕式儲存的方式繼續待數年,確定降溫、反應下降後,轉移到能讓核廢料存放超過 40 年的「乾式儲存場」,再來則是要能建立一個遠離所有生物生存環境的「最終處置場」。

乾式儲存場與最終處置場

這邊我們要先搞清楚,在反應爐中,鈾 235 是因為吸收中子才變得不穩定,進而引發一系列的連鎖反應;當我們拿掉這些亂源中子,鈾 235 是相對穩定的,半衰期甚至長達 7 億年,這也是為什麼鈾 235 能在大自然中存在,至今而沒有因為衰變而消失。

在核廢料儲存階段,還會通過放置大量的中子吸收材料在燃料棒之間,確保高階核廢料產生的中子不會引發連鎖反應。實際上,到了乾式儲存階段,僅有微弱的連鎖反應和自身衰變產生的過程會產生熱量,產生熱的速度光靠空氣的自然流動就能維持穩定。

整個乾式儲存場的設計,在經過層層阻絕後,廠區邊界的輻射標準值為每年 0.05 毫西弗。台灣人平均每年接受的背景輻射劑量約為 1.6 毫西弗,扣掉背景輻射,每年因為醫療、搭飛機所接受的背景輻射建議值建議不超過 1 毫西弗;以乾式儲存場的設計標準來說,其實不需要恐慌。另外,美國核能設備和系統供應商 Holtec 甚至做過時速 965 公里的火箭撞擊試驗,證實自家乾式儲存槽的安全性。

即便如此,有人還是會擔心天災等意外產生不可預期的後果。為了安心,我們是否能找個遠離人類的地方,永遠將這些核廢料藏起來,眼不見為淨呢?

目前國際上普遍認為,核廢料的最終去處將採用深層地質處置;將核廢料埋進 300 公尺以上的深度,數萬年甚至數十萬年。

從 1980 年代就開始,就有不少的地下示範場域進行相關研究;直到現在,預計於明年啟用、位於芬蘭地底 430 公尺的深層地質處置場 Onkalo(芬蘭語中的意思為空腔之意),最有望成為大家參考的對象。為了減少容器的腐蝕現象,核廢料會被裝在含硼的鋼罐中,外面再套一層銅膠囊,並使用膨潤土妥善密封;整座如蟻穴般的儲存場預計可以收納上方核電廠 100 年份的核廢料,並在被塞滿後,將剩餘的通道與設施重新填平。

核二廠還得要再花 25 年,才能完成全部的退役工作。圖/維基百科

至於台灣核廢料的最終處置場該設在哪呢?專家評估,核一、核二廠靠近第二類斷層山腳斷層,不適合作為核廢料的最終儲存場所;目前原能會還在調查適合的地點,預計 2038 年才會選定最終場所。

第四代核反應爐

核廢料這個棘手問題,除了封存以外,我們有沒有從根本解決,減少「量」的方法呢?可能還真的有,比爾蓋茲投資開發的第四代核反應爐——行波反應爐有可能可以解決這個問題。

為有效解決核廢料問題,在這個反應爐中,將過去無法作為發電原料的鈾 238 與其他核廢料作為原料。這對核分裂發電廠來說絕對是個好消息!現在的核燃料棒中能參與反應的鈾 235 僅佔 3~5%,其他 95% 都是鮮少參與反應的鈾 238,在自然界中鈾 238 的占比更高達 99.3%,如果行波反應爐可使用鈾 238 作為原料,絕對能大幅減少核廢料與需開採的鈾原料。

除了行波反應爐外,還有許多不需要持續添加核燃料、能循環發電的第四代核反應爐也正在研發當中,像是熔鹽反應爐,以及鈉冷快中子反應爐。

芬蘭深層地質處置場 Onkalo 也引出不同的聲音,畢竟如果未來第四代核電廠真的能將高階核廢料循環再使用,我們現在真的應該將之徹底封死嗎?

最後,我們還是要強調,台灣核一、核二、核三廠最後留下總計約 5000 噸的高階核廢料問題,仍不會改變。但將核廢料埋起來眼不見為淨,真的是最好的辦法嗎?你覺得這些高階核廢料又該如何處理呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2
PanSci_96
1166 篇文章 ・ 1513 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
5

文字

分享

0
2
5
將一生毫無保留地奉獻給科學——瑪麗亞.斯克沃多夫斯卡.居禮
椀濘_96
・2022/03/21 ・3561字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
做測驗,就有機會獲得免費特製手搖飲品,現場還有大獎等你抽!

瑪麗亞.斯克沃多夫斯卡-居禮(Maria Skłodowska-Curie,1867-1934),看姓氏不難聯想到,她就是我們所熟知的居禮夫人。她開創了放射性理論,發明分離放射性同位素技術,以及發現兩種新元素,是第一位獲得諾貝爾獎的女性,也是首位獲得兩座獎項的學者,在科學上的貢獻對後世影響深遠。

瑪麗亞.斯克沃多夫斯卡-居禮(1867-1934)。圖/Wikipedia

艱難困苦的童年

瑪麗生於波蘭華沙的書香世家,排行老么,家中有布朗斯拉娃(二姐)與索菲亞(大姐)兩位姊姊。父親是一名中學老師兼理事,母親原為一名校長,祖父亦是位受人尊敬的數學與物理教師。

當時的波蘭已被俄羅斯帝國佔領,在沙皇的統治下,波蘭人民的生活處處受限,也影響了瑪麗一家的命運。瑪麗的父親因濃烈愛國精神而被俄國上司打壓,校方撤除了他的理事一職,並將他們全家趕出宿舍;加上雙親的家庭參與波蘭獨立民族起義,家中又遭遇投資失利,經濟頓時陷入困境。

隨後瑪麗一家搬進廉價的住所,父親為貼補家用便招收了多名寄宿生,平時除供應食宿外,從學校下班後還替他們補習來賺取更多收入。生活看似漸漸好轉,但遺憾的是,短短三年內瑪麗的大姐及母親皆因病去世。

1890 年,瓦迪斯瓦夫.斯克沃斯基與女兒們的合影,左起:瑪麗亞、布朗斯拉娃(二姐)、索菲亞(大姐)。圖/Wikipedia

因性別在求學路上受阻

天資聰穎的瑪麗亞自幼就是個相當用功的學生,尤其在數理方面更是表現亮眼;在她 15 歲那年,便以第一名的成績從女子文理學校畢業。

然而,因當時波蘭的正規高等院校拒收女性學生,波蘭女子若想繼續接受正規的大學教育,唯一一條路就是出國留學,但這對瑪麗家中的經濟條件而言,是筆相當大的開銷且難以負擔。

成績同樣優異的二姐曾想過前往巴黎學醫,夢想成為一名懸壺濟世的醫師,但礙於家中經濟狀況遲遲無法如願。瑪麗想幫姐姐盡早完成學業,決定先當家教來資助其學費,兩人也約定,待畢業後再協助瑪麗出國求學。在瑪麗的支持下,二姐終於得以前往巴黎一圓醫師夢。

爾後的幾年,瑪麗一面做著家教工作,一面自學,期間閱讀了大量化學相關書籍,也是在這時獲得了第一份實驗室工作機會,這消息對她相當振奮;儘管實驗室設備簡陋,但能把在書中讀到的知識親手實作就已心滿意足,此經歷也影響了她未來將走上科學研究這條路。晚年瑪麗回憶起這段的時光:

「就是因為這第一次的實驗室工作,使我肯定自己在實驗研究上的興趣。」

突破重重阻礙取得學位

1891 年,24 歲的瑪麗在進行實驗室工作的同時,也終於踏上留學路,前往巴黎大學修讀物理學。剛到巴黎的她人生地不熟,對語言不熟悉外,又因過往在波蘭所受的教育無法應付大學課程,初期學業表現遠遠不及同儕。瑪麗便在課業上下足功夫,閒暇時間也都泡在圖書館裡,終於皇天不負苦心人,靠著清晰的思維加上勤奮苦讀,成績漸漸有了起色。

1893 年瑪麗以第一名的佳績成功取得了物理學碩士學位,原先是想再取得一個數學學位,但此時她已將留學用的積蓄花光,也就放棄了這份念頭。幸運的是,在友人的協助下,華沙當局頒發給瑪麗海外優秀留學生「亞歷山大獎學金」,使她得以重返巴黎大學繼續深造,並在隔年順利取得第二個碩士學位。值得讚揚的是,在畢業的幾年後她將這份獎學金歸還給委員會,這舉動令人相當震驚,從未有任何一名學子歸還過,而瑪莉是第一位。

科學界的佳偶——居禮夫婦

學成後,瑪麗留在法國並開啟了她的科研生涯。當時為了能夠順利進行工作,正尋找著合適的實驗室;在同鄉物理學家約瑟夫.科瓦爾斯基介紹下,她結識了未來的丈夫,法國青年科學家——皮耶.居禮。對科學滿懷熱情的兩人情投意合,彼此欣賞著對方的個性及才華。

1894 年,瑪麗返回波蘭生活,原以為能在家鄉繼續從事喜愛的科研工作,然而波蘭的大學仍以性別為由將其拒絕。在皮耶的說服下,瑪麗回到巴黎並協助他完成了磁性研究,兩人也在同年結為連理。

當時總有人打趣得說:「皮耶最大的發現就是瑪麗」。

在實驗室裡的居禮夫婦。圖/Wikipedia

帶領科學邁向新篇章

婚後夫婦倆一面養育女兒,一面做科研。瑪麗首要目標就是取得博士學位,她選定了當時剛發現的X射線以及鈾射線作為研究主題。後續在研究鈾礦時,透過驗電器的測量結果,瑪麗推斷鈾礦必定含有其他活性比鈾大的物質,於是開啟了她尋找其他放射性物質之路。

皮耶對瑪麗亞的工作越來越感興趣,隨後也加入了太太的行列。他們用酸液分解研磨過的瀝青鈾礦,再用化學分析方法分離出瀝青礦中可能含有比鈾更具放射性的物質。不久後,成功從實驗裡發現了比鈾的活性高 300 倍的新元素。隨後居禮夫婦發表了一篇聯合署名論文,正式宣布以「釙」(Polonium)命名所發現的新元素,以紀念波蘭。

在發現釙之後不久,她從實驗中發覺似乎有更強烈的放射性物質,便認定這也許是另一個新元素,這時物理學家亨利.貝克勒也加入了居里夫婦的研究行列。他們終於找出這個放射性比鈾大 900 倍的物質,三人將新元素命名為「鐳」(radium),拉丁文意為「射線」,也在研究過程中創造出單詞「放射性」(radioactivity)。

在當時居禮夫婦聯合及單獨發表的 32 篇論文中,其中一篇就為:在鐳輻射下,病變或腫瘤細胞比健康細胞死得更快。可說是若沒有這份的研究成果,就不會有現在用來治療癌症的放射性療法了。

得來不易的諾貝爾獎

在一系列研究及發現後,1903 年瑪麗終於獲得巴黎大學物理博士學位。同年瑞典皇家科學院授予居禮夫婦及亨利.貝克勒諾貝爾物理學獎,起初委員會僅表彰皮耶和貝克勒,不過有位倡導女性科學家權利的委員通報並向上申訴,瑪麗亞才能獲得提名,成為了首位獲得諾貝爾獎的女性。

1911 年諾貝爾獎證書。圖/Wikipedia

隨著瑪麗亞成功從金屬中提煉出鐳,1911 年瑞典皇家科學院授予她第二座諾貝爾獎(此次為化學獎),以表彰:「發現了鐳和釙元素,提煉純鐳並研究了這種引人注目的元素的性質及其化合物」。此次的獲獎肯定也使她能夠說服法國政府支持並建立鐳研究所,該研究所於 1914 年建成,研究領域涉及化學、物理、醫學等。

將自己毫無保留地貢獻給科學與社會

一戰期間瑪麗為協助戰地外科醫生,便在靠近前線的地方設立了戰地放射中心。她的身影穿梭在戰地醫院中,指導著 X 光裝置的組裝及使用,據估計,超過 100 萬受傷士兵受過她的流動式 X 光機治療。

瑪麗與她的 X 光車。圖/Wikipedia

在戰後的歲月裡,瑪麗亞將時間奉獻將所學與經驗傳授給學生,也包括許多遠從世界各地慕名而來的後進學者。在她的指導下,鐳研究所培育出了四位諾貝爾獎得主,女兒伊倫.約里奧-居禮及女婿弗雷德里克.約里奧-居禮也在其中。

1934 年,瑪麗亞因再生不良性貧血逝世於療養院,後世普遍認為是因長時間暴露於輻射中而造成的,當時科學上並未了解到游離輻射會對人體產生危害,也未開發任何防護措施。瑪麗亞的生活處處充滿放射性物質,幾十年間患上了多種慢性疾病,然而一直到去世,她從未意識到這會危及自己的健康甚至是生命。

瑪麗亞.斯克沃多夫斯卡-居禮一生不慕名利,奔波於科學研究、教育學子,將畢生毫無保留地貢獻給科學與社會。直到今日,世人仍持續讚賞她的付出與貢獻,紀念這位偉大的科學家。

參考資料:

  1. 維基百科—瑪麗.居禮
  2. 科學名人堂—居禮夫人
  3. 居禮夫人:大家都聽過的科學家,與她充滿波折的人生和感情路
  4. 科技大觀園—開啟輻射醫學大門的居禮夫人
  5. 傑出的科學貢獻與多舛波折的人生:瑪麗.居禮誕辰|科學史上的今天:11/7
椀濘_96
11 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

1

4
0

文字

分享

1
4
0
考慮輻射粉塵飄落,福島五縣食品改為「品項限制」是較有保障的作法
台灣科技媒體中心_96
・2022/02/18 ・1636字 ・閱讀時間約 3 分鐘

行政院於今(111)年 2 月 8 日宣布取消日本福島地區食品進口禁令,以「回歸科學檢驗、比國際標準更嚴格、為食安把關」 等三原則調整管制措施,其中包括從「禁止特定地區進口」改為「禁止特定品項進口」、風險品項需提供雙證(輻射檢測證明及產地證明),以及福島等五縣食品必須逐批檢驗才能進口等三項配套措施。

由於目前大眾仍未能有機會看見和理解「日本進口食品」相關的科學證據,常出現因政治而失焦的非理性討論,台灣科技媒體中心於 2 月 17 日召開記者會,邀請慈濟大學公共衛生學系謝婉華副教授與清華大學原子科學技術發展中心許芳裕教授,分別說明輻射食品的科學證據,以及目前制訂福島食品進口的規範時,如何評估對人體健康的影響。

台灣科技媒體中心邀請許芳裕教授、謝婉華副教授一同召開記者會。圖/台灣科技媒體中心提供

許芳裕表示,目前世界上很多國家都遵循國際放射防護委員會(ICRP)的建議,制定與核輻射有關的法規。ICRP 將輻射的危害分為「確定效應」和「機率效應」,前者是指過量輻射對人體的損害會隨著劑量提高而加深,後者則與癌症發生的機率有關。從 1945 年開始的輻射效應數據研究顯示,只要劑量低於每年 1 毫西弗(mSv),對人體的影響都是可以忽略的。

目前國際標準指出,若是單次或年累積曝露的劑量低於 100 毫西弗,都可以忽略,若超過 100 毫西弗,可能會有健康影響。研究證據也說明 100 毫西弗對人體沒有確定效應(損害),機率效應(癌症發生率)的影響則可以忽略。因此目前各國法規均訂有人員劑量限值:輻射工作人員職業曝露每年不得超過 50 毫西弗,一般人則不得超過 1 毫西弗——只要符合法規劑量限值內,健康效應的風險應可忽略。

至於國際是如何換算「食品檢驗」到「人體接受的安全劑量」。許芳裕說明,國際上是透過國際食品法典委員會(Codex)的規範,假定成人每年攝取 550 公斤的食物量、嬰幼兒的每年攝取 200 公斤的食物量,再參照各國進口日本食品的比例,來制訂食品輻射限量標準。假設日本食品佔所有飲食的十分之一,納入放射性元素和劑量的影響後,就可換算出各國成人和嬰幼兒的食品輻射限量標準。

日本在制訂國內標準與估算安全劑量時,是以銫-134 和銫-137 為準,假定每人 100% 會攝入輻射食品。

以衛福部的資料為例,台灣目前是參照日本較嚴格的數值,相對其他國家來說較為嚴格。

謝婉華依據其在 2017 年的研究結果表示,大部分的檢測結果都顯示「若台灣民眾因進口食品產生額外的輻射曝露,健康危害應是可被忽略的」。在計算這些額外的輻射總曝露風險時,0-3 歲兒童的額外輻射曝露總量為每年 0.000147 毫西弗,相比照一張胸部 X 光片的 0.02-0.05 毫西弗,風險極低,但和攝入的曝露風險無法類比。

澳洲官方報告也指出,日本福島事件帶給澳洲居民的風險低於 1 毫西弗的輻射曝露量,對人體的機率效應影響可以忽略。另外,在去(2021)年 9 月,美國也解除日本食品輸入的「進口警示」,並且分析 1,749 筆資料,發現僅有 3 筆(2 筆綠茶、1 筆薑粉)檢出輻射量,但遠低於標準。

綜上所述,現今開放日本福島五縣市食品,對國人的健康風險應該可被忽略。

許芳裕和謝婉華都同意,因台灣對福島地區食品的檢驗標準比國際嚴格,在符合檢驗標準下,進口該地區食品的健康風險極低。至於法規將原先的「地區限制」修訂為「品項限制」,確實是更安全的方法,因為輻射粉塵可能會飄落其他縣市,使得鄰近福島 5 縣的地區也有風險,所以改為品項限制更能安全把關,也更符合科學做法。

延伸閱讀

所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 325 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。