Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

曲終人散空愁暮:孤獨感的神經科學

高 至輝
・2016/04/21 ・3207字 ・閱讀時間約 6 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

圖&文 / 高至輝,東京大學醫學系研究科特任研究員

類似於唐代劉禹在「曲終人散空愁暮,招屈亭前水東注」所寫下的心境,熱鬧的與三五好友暢所欲言,飲酒高歌的之後所感到的莫名空虛,有時要比滿桌狼藉的杯盤更讓人難耐。

7_120921172109_1

隨著科技的發展,神經科學家正逐漸掌握人類的許多情感與大腦神經活動的對應關係。然而對於寂寞這種感受,雖然心理學上已經有不少相關的實驗與詮釋,但我們對於這種心理狀態在神經活動的層次上,仍未能給出一個較具體的說明。歸功於近年的螢光顯微鏡與光控基因學實驗技術上的進步,神經科學家不僅可以在進行特定活動的生物身上,同步觀察特定神經群在該狀態下的活動;同時也能精確的在所需的時間點啟動(活化)、或是關閉(抑制)特定神經群。這當中最大的意義,在於透過組合這些新的技術來設計實驗,神經學家終於能夠更精確的驗證,藏身於心理現象背後的各種神經活動,究竟扮演了怎麼樣的角色1

關於藏身在寂寞感背後的大腦神經活動,今年二月,刊載於期刊 Cell 的一篇文章提供了最為初步的動物實驗作為證據,首次帶領我們窺探大腦如何在神經層次上處理寂寞的感受2。以包含人類的群居生物而言,孤獨或隔離一般而言會引發個體強烈的厭惡與迴避3-6。同時,先前在以人類為對象的研究指出,孤獨或隔離的經驗能夠提高生物對於社交的敏感度,同時也會提昇個體對於社交行為的欲求7-9。在另外的實驗中,研究人員也從囓齒類動物身上也觀察到了與人類相似的改變11-12,顯示出老鼠在對於孤獨感的反映上與人類有一定的類似性。在老鼠身上,已經有實驗指出社群隔離會促使老鼠腦中神經傳導物質多巴胺(dopamine)濃度的上升13;不過目前為止,我們還不知道些多巴胺來自於哪些神經,或是這些多巴胺準確的作用對象。對於神經科學有興趣的讀者可能知道,多巴胺這種神經傳導物質一般被認為與強化學習中的正向回饋機制有關,但事實上,近年來科學家已經陸續發現,多巴胺隨著不同的分泌來源與不同的作用對象,與避忌、焦躁、醒覺等等截然不同的現象也有著密不可分的關係14,15。因此,孤獨感或相關的反應與多巴胺濃度上升的關聯性,仍需透過實驗進一步的釐清。

-----廣告,請繼續往下閱讀-----

在文章所記載的實驗中,作者首先在歷經短期性社會隔離的成鼠身上,發現了一群發源自中腦「中縫背核」(dorsal raphe nucleus)的多巴胺神經,對於其他神經所釋放的刺激性神經傳導物質:穀胺酸 ( glutamate ) 有更加敏銳的反應。作者也發現,那些歷經隔離的老鼠在與陌生的幼鼠之間的互動,會觸發這些多巴胺神經群顯著神經活動。有趣的是,未歷經社會隔離的老鼠身上則沒有辦法觀察到同樣的神經活動。這兩項結果可以說明,至少在老鼠身上,作者發現了孤獨可以改變一群多巴胺神經的反應性,而在與其他老鼠互動時,這些神經會因著個體所遭遇的隔離經驗做出不同的回應。那麼,這些神經群的活動又會引發什麼結果呢?

老鼠也有社交,也懂得寂寞。
老鼠也有社交,也懂得寂寞。

進一步利用光控基因學的技術來刺激這群神經,作者試圖在正常的老鼠身上,從神經活動的層次來「再現」受過隔離的狀態,藉此來觀察這樣的刺激對於老鼠行為的影響。正如他們所預期的,單單刺激這些神經就能夠促使未受到隔離的正常老鼠耗費更多的時間與陌生的幼鼠互動,顯示出較高的社交傾向;更有趣的是-如果是無關社交的行為實驗,刺激同樣的神經群反而會使老鼠選擇不會受到光控刺激的環境,顯示出了老鼠不偏好會促使該群神經活化的狀態。反向來說,在歷經隔離的老鼠身上使用光控基因學的技術來抑制這些神經本身的活動時,不意外的,實驗中作者的發現這樣的操作使得歷經孤獨的老鼠,表現出與正常老鼠相同的社交頻率,彷彿他們未曾受到短期隔離一樣。加上了這一系列正反向的實驗,作者認為:這些神經群在個體受到隔離後不只變得比較「敏感」,他們的活動足以促進老鼠對於社交欲求的提昇,同樣的在非社交性的行為實驗中,該神經群的活動也引發了避忌反應。這樣的結果或許可以呼應了類似於人類在孤獨時,對於社交的需求與想要從孤獨當中逃開的衝動並存的經驗。因此,這群神經可能負責感知或統合個體所歷經的孤獨,並在之後藉由自身的活動促使個體做出適當的反應。

此外,這項研究還有一個推測性較強,卻十分有趣的結論。作者發現到在歷經隔離之前社交的「品質」似乎會影響實驗的結果。與許多群居性生物一樣,每隻老鼠在群體中有自己的位階16,17,而一隻老鼠的位階可以簡單的反映在一個簡單的行為實驗上18,19:當兩隻老鼠從直線水管的兩側同時進入,最終會有一隻老鼠選擇退讓,讓另一隻老鼠得以優先通過,這隻優先通過的老鼠就擁有較高的位階。常理而論,一個群體當中擁有較高位階的老鼠,不管在擇偶,地盤,或是食物的分配上都有優先權,因此作者假設擁有較高位階的老鼠應當擁有較好的「社交品質」,而位階較低的老鼠即時身在社群當中,但實際上卻較為接近社會隔離的狀態。作為佐證,作者發現到在他們先前的實驗當中,擁有較高位階的老鼠與操作的效果呈現了正向的相關,即便未達到統計上的顯著差異,作者認為他們的實驗多少能夠回應以往由觀察位階不同的正常猴子與受到隔離的猴子部分腦區當中多巴胺接受體的增減所提出的假說20,並且進一步贊同比起客觀性上的隔離,個體在主觀上所感受到的孤立或許有助於了解個體實際上的心理狀態的論點21,22

嚴謹一點看,這篇研究最大的貢獻在於首次證明了孤獨感在大腦神經活動上的「一個」表徵,但在此同時該研究並沒有否定其他的神經迴路參與其中。同時,作者也證明這次發現的神經群對於下游會同時釋放多巴胺與穀胺酸兩種神經傳導物質,他們現階段仍無法辨別這兩者在此次的現象中所扮演怎麼樣的角色。而最後本研究對於社會位階對於孤獨感的推測雖然合情合理,但這兩者的關係仍然有待進一步的研究來釐清。但不管如何,這篇研究無疑是為後續的相關研究提供了有實證基礎的想像空間,為我們對於孤獨感的了解,找到了一個強而有力的切入點。

-----廣告,請繼續往下閱讀-----

寂寞雖不是病,但也有研究指出寂寞會提升個體在健康上的風險,例如提升發炎反應相關基因的表現量,或是降低對抗病毒相關基因的表達23。也許不是針對每個人,但我們仍然可以期待有一天科學的力量可相平息某些不合時宜又令人束手無策的寂寞,為需要的人提供有效的治療。

引用文獻:

  • 1. Kay M. Tye & Karl Deisseroth (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience 13, 251-266.
    2. Gillian A. Matthews, Edward H. Nieh, Caitlin M. Vander Weele, Sarah A. Halbert,1 Roma V. Pradhan, Ariella S. Yosafat, Gordon F. Glober, Ehsan M. Izadmehr, Rain E. Thomas, Gabrielle D. Lacy, Craig P. Wildes, Mark A. Ungless,2, and Kay M. Tye (2016) Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell 164, 617–631.
    3. Cacioppo, J.T., Hughes, M.E., Waite, L.J., Hawkley, L.C., and Thisted, R.A. (2006). Loneliness as a specific risk factor for depressive symptoms: cross- sectional and longitudinal analyses. Psychol. Aging 21, 140–151.
    4. Cacioppo, S., Capitanio, J.P., and Cacioppo, J.T. (2014). Toward a neurology of loneliness. Psychol. Bull. 140, 1464–1504.
    5. Holt-Lunstad, J., Smith, T.B., and Layton, J.B. (2010). Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316.
    6. House, J.S., Landis, K.R., and Umberson, D. (1988). Social relationships and health. Science 241, 540–545.
    7. Baumeister, R.F., and Leary, M.R. (1995). The need to belong: desire for inter- personal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529.
    8. Maner, J.K., DeWall, C.N., Baumeister, R.F., and Schaller, M. (2007). Does social exclusion motivate interpersonal reconnection? Resolving the ‘‘porcupine problem’’. J. Pers. Soc. Psychol. 92, 42–55.
    9. Williams, K.D., and Sommer, K.L. (1997). Social Ostracism by Coworkers: Does Rejection Lead to Loafing or Compensation? Pers. Soc. Psychol. Bull. 23, 693–706.
    10. Loo, P.L.P.V., de Groot, A.C., Zutphen, B.F.M.V., and Baumans, V. (2001). Do Male Mice Prefer or Avoid Each Other’s Company? Influence of Hierarchy, Kinship, and Familiarity. J. Appl. Anim. Welf. Sci. 4, 91–103.
    11. Niesink, R.J., and van Ree, J.M. (1982). Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol. Behav. 29, 819–825.
    12. Panksepp, J., and Beatty, W.W. (1980). Social deprivation and play in rats. Be- hav. Neural Biol. 30, 197–206.
    13. Hall, F.S., Wilkinson, L.S., Humby, T., Inglis, W., Kendall, D.A., Marsden, C.A., and Robbins, T.W. (1998). Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacol. Biochem. Behav. 59, 859–872.
    14. Brischoux, F., Chakraborty, S., Brierley, D.I., and Ungless, M.A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899.
    15. Lammel, S., Lim, B.K., Ran, C., Huang, K.W., Betley, M.J., Tye, K.M., Deisser- oth, K., and Malenka, R.C. (2012). Input-specific control of reward and aver- sion in the ventral tegmental area. Nature 491, 212–217.
    16. Drews, C. (1993). The Concept and Definition of Dominance in Animal Behav- iour. Behaviour 125, 283–313.
    17. Uhrich, J. (1938). The social hierarchy in albino mice. J. Comp. Psychol. 25, 373–413.
    18. Lindzey, G., Winston, H., and Manosevitz, M. (1961). Social Dominance in Inbred Mouse Strains. Nature 191, 474–476.
    19. Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., and Hu, H. (2011). Bidirectional Control of Social Hierarchy by Synaptic Efficacy in Medial Prefrontal Cortex. Science 334, 693–697.
    20. Morgan, D., Grant, K.A., Gage, H.D., Mach, R.H., Kaplan, J.R., Prioleau, O., Nader, S.H., Buchheimer, N., Ehrenkaufer, R.L., and Nader, M.A. (2002). Social dominance in monkeys: dopamine D2 receptors and cocaine self-administra- tion. Nat. Neurosci. 5, 169–174.
    21. Hawkley, L.C., Hughes, M.E., Waite, L.J., Masi, C.M., Thisted, R.A., and Ca- cioppo, J.T. (2008). From social structural factors to perceptions of relation- ship quality and loneliness: the Chicago health, aging, and social relations study. J. Gerontol. B Psychol. Sci. Soc. Sci. 63, S375–S384.
    22. Peplau, L.A. (1978). Loneliness: A bibliography of research and theory (Amer- ican Psychological Association).
    23. Steven W. Colea, John P. Capitanioc, Katie Chunc, Jesusa M. G. Arevaloa, Jeffrey Maa, and John T. Cacioppo (2015) Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation. Proc. Natl. Acad. Sci. U.S.A. 113(3), 15142–15147.
-----廣告,請繼續往下閱讀-----
文章難易度
高 至輝
9 篇文章 ・ 0 位粉絲
東京大學醫學系研究科特任研究員。大學主修化學,從碩士轉攻結蛋白質構生物學,其後飛往日本攻讀神經生理學,畢業後留在日本繼續探索有關神經迴路形成的機制。私底下屬有跡可循的雜食性,對於理解各種人文或科學概念的發展進程充滿興趣。

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
睡眠不足來杯咖啡?小心!這可能是個惡性循環——《人類文明》
天下文化_96
・2024/06/19 ・2251字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

咖啡因對大腦的影響

咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。

然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。

植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。

研究顯示,咖啡因是蜜蜂的興奮劑,可以讓他們願意不斷嗡嗡嗡上工。圖/envato

咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。

-----廣告,請繼續往下閱讀-----

在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。

〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕

咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。圖/envato

所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。

如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。

然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。

-----廣告,請繼續往下閱讀-----

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

4
2

文字

分享

0
4
2
快樂的事物令人上癮?為什麼多巴胺讓你成「癮」?——《人類文明》
天下文化_96
・2024/06/18 ・2126字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

多巴胺與大腦的愉悅中心

腦幹是大腦最早演化出的區域之一,也是連結脊髓的關鍵。腦幹頂部有一組稱為腹側被蓋(ventral tegmentum)的神經元,而大腦中有一個控制行為的區域,稱為依核(nucleus accumbens),腹側被蓋與依核的溝通,是透過一群會釋放多巴胺的神經元,稱為中腦邊緣路徑(mesolimbic pathway);雖然這些神經元只占了大腦所有神經細胞的一小部分(不到 0.001%),卻對激勵人類生存與繁殖的行為至為關鍵。

人吃東西、解渴或做愛的時候,都會讓中腦邊緣路徑釋放多巴胺。而且觀看、甚至只是去想些色色的事情,就足以刺激多巴胺的分泌。某些讓人覺得心滿意足的事,例如第一章〈文明背後的軟體〉談過的復仇、或是打電玩獲勝,也能刺激我們的多巴胺系統。

人腦接收到這些報償訊號,就會感覺愉悅,因此常有人說多巴胺是大腦裡的快樂物質。在動物界,不是只有人類具備這樣的多巴胺釋放機制。所有哺乳動物都有這樣的中腦邊緣報償路徑,可說是大腦運作最古老而基本的其中一項功能。事實上,整個動物界都很常看到這種用多巴胺或相關神經傳遞物質,來影響行為的系統。

人類遇到快樂的事,中腦邊緣路徑就會大量分泌多巴胺。為了讓我們順利生存,大腦就會想去重複那些上次啟動多巴胺系統的行為,並避開那些曾經抑制多巴胺系統的舉動。圖/envato

只要遇上對人有利的情形,例如有吃有喝,或特別是意外之喜,中腦邊緣路徑就會大量分泌多巴胺;相對的,遇上對人不利的情形,例如接受到負面經驗,或是沒有得到預期的報酬,則會讓多巴胺濃度下降。所以,為了調整人類行為,好讓我們在自然棲地成功生存,大腦就會讓我們想去重複那些上次啟動多巴胺系統的行為,並避開那些曾經抑制多巴胺系統的舉動。所以,這套關於快樂與報償的神經化學系統,其實也就是一套關於學習的神經化學系統。

-----廣告,請繼續往下閱讀-----

這條多巴胺路徑也連結了腹側被蓋與前額葉皮質;前額葉皮質是大腦前側一個有皺摺的區域,人類的這個區域明顯大於其他動物。前額葉皮質掌管各種高階的「執行」功能,例如對特定目標做出決策與規劃,因此也同樣受到多巴胺報償系統的控制。

這套由多巴胺引導的機制,很有效的讓人類表現出有利於在自然界生存的行為。然而,等到人類發現可以用其他方式(也就是各種藥物)來刺激這套機制,目的並不是為了生存,那就開始出問題了。酒精、咖啡因、尼古丁、鴉片,這四種藥物會有效讓人腦的報償系統出現短路,引誘中腦邊緣路徑釋放多巴胺(或是抑制多巴胺的消退、又或是讓神經元表面的受體更加敏感),於是讓人感受到愉悅、甚至是狂喜,強度遠遠超出自然界能給人的快樂。然而,相較於像是「進食」這種自然觸發多巴胺的因素,由這些藥物產生的愉悅永遠不會讓人覺得已經滿足。

這些藥物會在中腦邊緣路徑產生錯誤的訊號,讓人誤以為這種行為大大有益於生存繁衍,於是推動學習機制,重新設計大腦的連線,來反覆追求這些行為。人的癮頭正是由此而生,讓人產生渴望與強迫的行為,追求立刻就要得到的滿足感,不像是在自然世界當中,總得付出一些代價(例如花時間狩獵),才能得到多巴胺的報償。

人類現在可能也困在成癮的快樂陷阱裡。圖/envato

科學家曾在 1950 年代做過實驗,以手術將電極植入大鼠的大腦深處,讓大鼠只要每次按下某個開關,就能刺激依核。結果發現大鼠開始出現強迫性按開關的行為,每小時高達兩千次。牠們不喝水、不吃飯、不睡覺,不做任何正常的行為,就只為了讓自己不斷感受那純粹的歡愉,直到最後不支倒地。

-----廣告,請繼續往下閱讀-----

可悲的是,人類現在可能也困在類似的陷阱裡,只不過並不是有個電極埋在大腦裡直接發出刺激,而是有些化學物質同樣瞄準了提供報償的中腦邊緣路徑。更糟的是,原本的天然植物產品現在還能提煉濃縮,甚至用化學手法提升效力,像是從鴉片原料合成海洛因(heroin)。比起過去口服的方式,現在透過口吸、鼻吸、甚至是直接注射到血管裡,就會讓活性物質更快對大腦發送一波衝擊,不但讓人更為狂喜,也讓人更容易成癮。

由於多巴胺系統會重新校正,經過幾次感受到重大報償後,多巴胺的釋放還是會回到基本水準。這稱為對藥物的習慣化,也是因此,才讓癮君子(不管習慣化的是咖啡因、還是古柯鹼)總會需要愈來愈高的劑量,才能感受到原本的興奮程度。正如神經內分泌學家薩波斯基(Robert Sapolsky)所言:「昨天還覺得是意想不到的快感,到今天就覺得理所當然,再到明天還會覺得怎可以此為滿。」於是不用多久,藥物曾經能夠帶來的愉悅就這樣消逝不再,繼續用藥只是為了避免戒斷時的種種不適。到頭來,這幾種藥物極有效的侵入大腦,劫持了原本能夠調整行為以利生存的報償系統,藥物濫用也成了人類普遍的弱點。

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。