0

0
0

文字

分享

0
0
0

化學家開發液體儲氫材料

only-perception
・2011/12/02 ・820字 ・閱讀時間約 1 分鐘 ・SR值 545 ・八年級

Oregon 大學的化學家已為「氫」開發出一種基於硼氮(boron-nitrogen)的「液相」貯存材料,不僅在室溫下可安全運作,而且具備大氣與濕度穩定性 — 這項成就為克服目前的儲存與運輸障礙,提供一條可能的路線。

在一篇位於 Journal of the American Chemical Society 期刊網站頭版位置的論文中報導,一個由四位 UO 科學家所組成的團隊描述開發出一種環狀胺硼平台稱為 「BN-methylcyclopentane(BN-甲基環戊烷)」。除了其溫度與穩定特性外,還具有無任何相變的氫脫附(hydrogen desorption)特色,那很乾淨、快速且能夠控制。它在脫附時使用可輕易取得的氯化鐵當作催化劑,並允許將用過的燃料(spent fuel)回收成「填充狀態(charged state)」。

研究者告誡,推動此貯存平台向前的大挑戰是需要增加氫產量並開發更節能的再生機制。

“除了可再生的氫製造外,氫儲存技術的開發一直都是建構氫能基礎建設的 一項重要工作,” Shih-Yuan Liu 說,化學教授以及 UO 材料科學研究所的研究者。

-----廣告,請繼續往下閱讀-----

美國能源部資助這項研究,要在 2017 年前為氫燃料開發出可行的液態或固態載體。這項新的 UO 方法由於是基於液態而非固態,與其他許多正在進行的研究有所不同,對此,Liu 表示,將使石油到一個氫基礎建設的可能轉換更加容易。

“基於材料的氫貯存領域已被固相材料的研究所主宰,例如金屬氫化物、吸附劑材料以及硼烷氨(ammonia borane),” Liu 表示。”可獲得液相氫儲存材料,代表在行動與攜行應用上,一種實用的氫儲存選擇,可利用當前普遍基於液體的燃料基礎建設。”

關鍵在於化學。Liu 的團隊原本發現六元環(six-membered cyclic)胺硼材料很容易隨著氫的釋出而 — 從更大的、想要的分子 –三聚化(trimerize)。然而,這些初始材料是固體。藉由調整結構,包括從六元環變成五元環的大小縮減,該團隊終於成功地創造出一種液態的版本,有著低蒸汽壓而且不會在氫釋出時改變其液體性質。

一開始,以可攜式燃料電池供電的裝置可以更輕易地採用這種新平台,Liu 表示,他也是 Oregon BEST(Built Environment & Sustainable Technologies Center)的成員之一。

-----廣告,請繼續往下閱讀-----

資料來源:PHYSORG:Chemists develop liquid-based hydrogen storage material[November 22, 2011]

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

7
1

文字

分享

1
7
1
整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域
ntucase_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

-----廣告,請繼續往下閱讀-----

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

-----廣告,請繼續往下閱讀-----
銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

-----廣告,請繼續往下閱讀-----

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

-----廣告,請繼續往下閱讀-----

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1
ntucase_96
30 篇文章 ・ 1471 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

2
1

文字

分享

0
2
1
糖、香料,還有一切美好事物?轟!人體組成了——《完全圖解 元素與週期表》
PanSci_96
・2019/12/09 ・2192字 ・閱讀時間約 4 分鐘 ・SR值 562 ・九年級

身體的組成,元素都知道

你體重的大約 65% 是由氧(O)所構成。體重 60 公斤的人,竟然有將近 40 公斤是氧原子的重量。下方插圖是表示組成人體的元素的內容(質量比例)。

組成人體的元素的內容(質量比例),人體的主要材料有 6 種元素。圖/人人出版提供

人體的 70% 左右是水(H2O),而氧是水的構成要素。構成身體的蛋白質和核酸(DNA 等)也需用到氧。此外,肺所攝取的氧會溶於血液中,供應給全身的細胞。

第 2 名之後依序為碳(C)、氫(H)、氮(N)等等。這些元素也是蛋白質以及核酸等製造人體的物質的材料。接下來的鈣(Ca)是骨骼的成分, 磷(P)主要做為製造核酸的成分。以上這些前 6 名的元素,占有體重的 98.5%。構成人體的元素,和構成地球的元素一樣,追本溯源,都是在宇宙空間或恆星裡面誕生的元素。

-----廣告,請繼續往下閱讀-----

人體也含有鐵(Fe)、鋅(Zn)等金屬。而且已知某些特定金屬是維持人體正常機能不可或缺的必需元素(請參照下表)。例如鐵,成人的體內含有大約 5 公克,主要用於製造血紅素(hemoglobin,血紅蛋白),這是一種在紅血球中負責與氧結合的蛋白質。眾所周知,如果鐵含量不足,輸送氧的能力會下降,導致貧血。

表格為包括微量元素在內的更詳細內容。依據含量的多寡分成多量、少量、微量、超微量等幾類。表格中以藍色字體書寫的是人體的必需元素。由表可知,有些元素雖然數量極微,卻是人體不可或缺的必需元素。

分類 元素名稱
(藍色為必需元素)
比例 體重 60 公斤中所含的量
多量元素 65% 39公斤
18% 11公斤
10% 6.0公斤
3% 1.8公斤
1.5% 900公克
1% 600公克
少量元素 0.25% 150公克
0.2% 120公克
0.15% 90公克
0.15% 90公克
0.05% 30公克
微量元素 5.1公克
2.6公克
1.7公克
1.7公克
0.27公克
0.27公克
0.17公克
0.10公克
86毫克
68毫克
超微量元素 51毫克
43毫克
17毫克
15毫克
11毫克
10毫克
9.4毫克
8.6毫克
8.6毫克
8.6毫克
1.7公克
1.7毫克
1.3公克
0.17公克
  • 註:1 mg = 0.001 g
  • 含量較多的前 6 名元素,占有體重的 98% 以上。人體含有各式各樣的元素,但其中有 23 種元素,如果欠缺的話會引發某種障礙,稱為必需元素。

人體內也有金屬存在?!

金屬元素是人體所必需的,這件事是在 1745 年第一次獲得確認。義大利醫師門吉尼(Vincenzo enghini)發現燃燒血液剩餘的灰燼可被磁鐵吸引,因而第一次注意到人的體內有金屬存在。

此外,汞(Hg)和砷(As)這類攝取太多會有害的元素,其實在人體裡面也含有微量(體重 60 公斤之中,就含有數毫克~數十毫克的程度)。這些元素到目前為止還沒有發現它們是人體所必需(承擔某種機能)的證據,但也有學者認為它們是必需的。

元素在體內如何被運用?

主要的元素在體內如何被運用。前6名元素是用來做為製造身體的蛋白質、核酸(DNA)、骨骼等的材料。此外,鈉及鉀等金屬材料則溶於體液中,發揮酸度的調節、細胞間的訊息傳送等功能。

主要的元素在體內如何被運用。(點圖放大)圖/人人出版提供

-----廣告,請繼續往下閱讀-----
  • 水(H2O):占體重的70%左右。以充滿於細胞間的體液或血液的形態,溶解氧等氣體、糖等營養成分、各種離子。
  • 丙胺酸(C3H7NO2):丙胺酸(alanine)是胺基酸的一種。蛋白質是由丙胺酸等 20 種胺基酸串連在一起而構成。在半胱氨酸(cysteine)這種胺基酸裡面含有硫。
  • 葡萄糖(C6H12O6):葡萄糖是糖的一種,以血糖形態溶於血液中,做為主要的能源使用。
  • DNA:在所有細胞的細胞核裡面,以遺傳基因的形態存在。DNA 由碳、氮、氧、氫、磷等 5 種原子構成。由於氫的數量很多,為了避免妨礙觀察,在上方的插圖中省略不畫。
  • 鈣(Ca):存在於體內的鈣之中,90% 以和磷結合的形態存在,做為製造骨骼的材料。
  • 鈉(Na):主要以鈉離子(Na+)的形態存在於體液中,用於酸度及離子濃度的調整等。
  • 鉀(K):主要以鉀離子(K+)的形態存在於細胞內,具有促進細胞代謝等的機能。
  • 氯(Cl):主要以氯化物離子(Cl)的形態,存在於細胞內及體液中,具有調整離子濃度等等的功用。
  • 鎂(Mg):約有 6 成存在於骨骼中,約有 4 成存在於肌肉等處。

——本文選自《完全圖解 元素與週期表:解讀美麗的週期表與全部118種元素!》,2019 年 9 月,人人出版

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。