0

0
0

文字

分享

0
0
0

「奈米樹」收成太陽能量將水轉變成氫燃料

only-perception
・2012/03/09 ・1087字 ・閱讀時間約 2 分鐘

UCSD 電機工程師正在建造一座由微小的奈米導線樹(nanowire trees)構成的森林,以便在沒有使用石化燃料的情況下潔淨地捕捉太陽能,並將之收成以產生氫燃料。在 Nanoscale 期刊中報告,這個團隊表示,奈米線(那以豐富的天然材料製成,例如矽與氧化鋅)亦提供一種大規模供應氫燃料的廉價方法。

「這是一種產生潔淨燃料的乾淨方法,」UCSD Jacobs 工程學院,電機與電腦工程系的 Deli Wang(音譯:王德立)教授表示。

根據 Wang 表示,這些奈米樹的垂直結構與分枝是捕捉最大量太陽能的關鍵。那是因為奈米樹的垂直結構會抓住並吸收光,而平坦的表面只是把它反射回去,Wang 同時補充道:那也很像人眼視網膜當中的光受器(體)細胞。在太空中拍攝地球的影像中,光線從平坦表面反射,例如海洋或沙漠比較亮,而森林則顯得比較暗。

Wang 的團隊在其「3D branched nanowire array(3D 分歧奈米導線陣列)」中模仿這種結構,使用一種叫做「光電化學水分離(photoelectrochemical water-splitting)」的製程來製造氫氣。水分離指的是將水分離成氧與氫,以便提取氫氣當燃料使用的過程。此製程使用潔淨能源,且沒有溫室氣體這種副產品。相較之下,目前傳統的製氫方法倚賴來自石化燃料的電力。

「相較於石化燃料,氫因為不會有碳排放而被視為潔淨燃料,但目前所使用的氫是用不乾淨的方式產生的,」 Ke Sun是電機工程博士生,負責領導此計畫。

利用垂直奈米樹結構收穫更多陽光,Wang 的團隊藉此開發出一種比平面相似物更有效率的產氫方法。Wang 亦隸屬於 UCSD 加州電信暨資訊科技研究所(Calit2)以及材料科學與工程計畫。

這種垂直分枝結構亦使氫氣輸出最大化,Sun 表示。例如,在一壺沸水的寬闊平坦表面上,泡泡必定要變大才能抵達表面。在奈米樹結構中,非常小的氫泡泡就能更快被提取出來。「此外,透過這種結構,我們將化學反應的表面積強化了至少 40 萬倍,」 Sun 說。

從長遠來看,Wang 團隊的目標甚至更大:人造光合作用(artificial photosynthesis)。在光合作用中,當植物吸收太陽光時它們亦從大氣中收集二氧化碳與水,以便創造碳水化合物供其生長所需。Wang 的團隊希望模仿這種過程,從大氣中捕捉二氧化碳,減少碳排放,並將之轉換成烴(hydrocarbon,碳氫化合物)燃料。

「我們正試圖模仿植物所做的事,以便將日光轉換成能源,」Sun 表示。「我們希望在不久的將來,我們的『奈米樹』結構最終能成為一種有效率的裝置,進行光合作用時猶如一顆真正的樹。」

該團隊也在研究氧化鋅的替代品,那吸收太陽光的紫外線,不過會有穩定性的問題,影響奈米樹結構的使用壽命。

原始文獻:Ke Sun, Yi Jing, Chun Li, Xiaofeng Zhang, Ryan Aguinaldo, Alireza Kargar, Kristian Madsen, Khaleda Banu, Yuchun Zhou, Yoshio Bando, Zhaowei Liu and Deli Wang.  Nanoscale, 2012, 4, 1515-1521   doi: 10.1039/C2NR11952H

資料來源:PHYSORG:Nanotrees harvest the sun’s energy to turn water into hydrogen fuel[March 7, 2012]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 0 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

1
0

文字

分享

0
1
0

災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?

EASY天文地科小站_96
・2021/09/19 ・2765字 ・閱讀時間約 5 分鐘
  • 文/陳子翔(現就讀師大地球科學系, EASY 天文地科團隊創辦者)

知名物理學家史蒂芬.霍金(Stephen Hawking)認為,小行星撞擊是宇宙中高等智慧生命最大的威脅之一。而回首地球的過去,六千五百萬年前的白堊紀末期,造成恐龍消失的生物大滅絕,也肇因於一顆直徑約十公里的小行星撞擊。那麼,我們應該擔心小行星帶來如同災難片場景的巨大浩劫嗎,人類又能為這件事做什麼準備呢?

我們該擔心哪些小行星,小行星撞擊能被預測嗎?

太陽系中的小行星不可勝數,但並非所有小行星都對於地球有潛在的危害。那麼,哪些小行星是應該注意的呢?

我們可以簡單從兩個條件,篩選出對地球有潛在威脅的小行星:第一是小行星的軌道,第二則是小行星的大小。如果一個天體的運行軌道與地球的運行軌道沒有交會,那也就不需要擔心它會部會撞到地球了。而直徑越大的小行星,撞擊地球產生的災害就會越大,例如一顆直徑 10 公尺的小行星墜落能造成小範圍的建築物受損,而直徑 50 公尺的小行星撞擊,其威力則足以摧毀整座大型城市。

https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg/1024px-Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg
2013 年俄羅斯車里亞賓斯克小行星墜落事件,隕石在空中爆炸的震波震碎大片玻璃。圖/Nikita Plekhanov

過去天文學家透過遍布世界的天文台,不斷在夜空中尋找近地小天體,並持續監測它們的動向。而透過觀測資料推算其軌道,就可以算出這些危險的小鄰居未來與地球發生「車禍」的機率有多大,而這篇文章的主角「貝努」,就是一顆被認為有較大機會撞擊地球,因此被重點關注的對象。

貝努撞地球會是未來的災難嗎?

貝努在 1999 年被發現,是一顆直徑約 500 公尺的小行星,它以橢圓軌道繞行太陽,公轉週期大約 437 天。由於貝努的軌道與地球相當接近,它每隔幾年就會接近地球一次,而本世紀貝努最接近我們的時刻將會發生在西元 2060 年,不過別擔心,該年貝努與地球最接近時,距離預計也還有七十萬公里,大約是地球至月球距離的兩倍,撞擊風險微乎其微。

綠色為地球軌道,藍色為貝努軌道。圖/University of Arizona

然而天文學家真正關注,撞擊風險較大的接近事件則會發生在下一個世紀。根據目前的軌道計算,貝努在西元 2135 年和 2182 年的兩次接近,會有較大的撞擊風險。說到這裡可能許多讀者會覺得,既然我們都活不到那個時候,何必去操心那些根本遇不到的事情呢?

那麼,讓我們想像一個情境:

如果今天天文學家突然發現了一顆與貝努一樣大的小行星,並算出它將在一年後撞上地球,那身為這個星球上「最有智慧的物種」,我們能怎麼應對呢?

很遺憾的:我們很可能對於撞擊束手無策。當前人類並沒有任何成熟的技術,能夠在這麼短的時間內改變小行星的軌道。這時候人們可能就會希望前人早點望向星空,調查小行星,好讓人們能夠有多一百年的時間準備應對的方法了!

小行星軌道計算不就是簡單的牛頓力學,為什麼算不準?

那麼貝努在未來 100〜200 年到底會不會撞擊地球呢?其實天文學家也說不太準,只能給出大概的機率而已,而且時間越久,預測的不確定性就越大。

你也許會想,天體的運行軌道不就只是簡單的牛頓力學,三百年前的人就已經掌握得很好了,在電腦科技發達的現代怎們會算不準呢?確實,如果要算地球與火星在 100 年後的相對位置,那電腦還能輕鬆算出相當精確的答案,但如果是計算小行星 100 年後的位置,事情就變得棘手多了……

由於小行星的質量很小,就算是相對微小的引力干擾還是足以改變其運行方向,而混沌理論(Chaos theory)告訴我們,任何微小的初始條件差異,都能造成結果極大的不同。因此要對小行星軌道做長期預測,就不能只考慮太陽的引力,而是必須把行星等其他天體的引力也納入計算,才能獲得比較準確的結果。尤其是當這些小行星與地球擦肩而過時,即使只有幾百公尺的位置偏差,受到的引力也會有相當的不同,使得小行星的未來軌跡出現巨大的差異。

而更令天文學家們頭痛的是,有些問題甚至不是萬有引力能夠解決的,其中一個因子就是「亞爾科夫斯基效應」(Yarkovsky Effect)。這個效應是這樣的:當陽光照在自轉中的小行星上,陽光會加熱小行星的受光面,而被加熱的這一面轉向背光面時,釋放的熱能會像是小小的火箭引擎一樣推動小行星。這個作用的推力非常小,但長期下來還是足以對質量很小的天體造成軌跡變化,也讓軌道預測多了很大的不確定性。

亞爾科夫斯基效應的動畫。影片/NASA

OSIRIS-REx 任務揭露貝努的神秘面紗,也讓軌道推估更精確

為了更深入了解貝努,NASA 在 2016 年發射 OSIRIS-REx 探測器探查這顆小行星。OSIRIS-REx 主要的任務包括從貝努表面採取樣本並送回地球分析、對整顆小行星做完整的調查,以及評估各種影響貝努運行軌道的因子,改善貝努軌道的預測模型,評估將來的撞擊風險。

在軌道分析方面,OSIRIS-REx 一方面能在環繞貝努的過程中緊盯貝努的「一舉一動」,讓天文學家透過精確的觀測結果反推貝努的軌道特性。另一方面,要評估亞爾科夫斯基效應對小行星軌道的影響,也需要考量小行星的地形地貌、反照率等等因素,因此 OSIRIS-REx 的各項觀測資料,也有助於建立更精確的軌道預測模型。

OSIRIS-REx 探測器。圖/University of Arizona/NASA Goddard Space Flight Center

目前 OSIRIS-REx 的任務還沒有結束,但是在取得更準確的軌道預測模型與撞擊風險評估上,已經有了初步的成果。根據這次任務提供的觀測資料,天文學家將預測貝努未來軌道的時間極限,從原本的西元 2200 年延長至 2300 年。而西元2300年之前,貝努撞上地球的機率大約是 0.057% (1/1750),最危險的一次接近則會發生在西元 2182 年

「知己知彼,百戰不殆」。面對像貝努這樣的危險鄰居,唯有盡可能認識它的一切,才越能夠掌握其未來的動向,進而在將來思考要如何面對小行星的撞擊的風險。另外,目前 OSIRIS-REx 也正在返航地球的旅途上,期待 2023 年 OSIRIS-REx 能順利的帶著貝努的樣本回到地球,帶給我們更多有關小行星的重要資訊!

參考資料

EASY天文地科小站_96
4 篇文章 ・ 7 位粉絲
EASY 是由一群熱愛地科的學生於2017年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策