Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「奈米樹」收成太陽能量將水轉變成氫燃料

only-perception
・2012/03/09 ・1087字 ・閱讀時間約 2 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

UCSD 電機工程師正在建造一座由微小的奈米導線樹(nanowire trees)構成的森林,以便在沒有使用石化燃料的情況下潔淨地捕捉太陽能,並將之收成以產生氫燃料。在 Nanoscale 期刊中報告,這個團隊表示,奈米線(那以豐富的天然材料製成,例如矽與氧化鋅)亦提供一種大規模供應氫燃料的廉價方法。

「這是一種產生潔淨燃料的乾淨方法,」UCSD Jacobs 工程學院,電機與電腦工程系的 Deli Wang(音譯:王德立)教授表示。

根據 Wang 表示,這些奈米樹的垂直結構與分枝是捕捉最大量太陽能的關鍵。那是因為奈米樹的垂直結構會抓住並吸收光,而平坦的表面只是把它反射回去,Wang 同時補充道:那也很像人眼視網膜當中的光受器(體)細胞。在太空中拍攝地球的影像中,光線從平坦表面反射,例如海洋或沙漠比較亮,而森林則顯得比較暗。

Wang 的團隊在其「3D branched nanowire array(3D 分歧奈米導線陣列)」中模仿這種結構,使用一種叫做「光電化學水分離(photoelectrochemical water-splitting)」的製程來製造氫氣。水分離指的是將水分離成氧與氫,以便提取氫氣當燃料使用的過程。此製程使用潔淨能源,且沒有溫室氣體這種副產品。相較之下,目前傳統的製氫方法倚賴來自石化燃料的電力。

-----廣告,請繼續往下閱讀-----

「相較於石化燃料,氫因為不會有碳排放而被視為潔淨燃料,但目前所使用的氫是用不乾淨的方式產生的,」 Ke Sun是電機工程博士生,負責領導此計畫。

利用垂直奈米樹結構收穫更多陽光,Wang 的團隊藉此開發出一種比平面相似物更有效率的產氫方法。Wang 亦隸屬於 UCSD 加州電信暨資訊科技研究所(Calit2)以及材料科學與工程計畫。

這種垂直分枝結構亦使氫氣輸出最大化,Sun 表示。例如,在一壺沸水的寬闊平坦表面上,泡泡必定要變大才能抵達表面。在奈米樹結構中,非常小的氫泡泡就能更快被提取出來。「此外,透過這種結構,我們將化學反應的表面積強化了至少 40 萬倍,」 Sun 說。

從長遠來看,Wang 團隊的目標甚至更大:人造光合作用(artificial photosynthesis)。在光合作用中,當植物吸收太陽光時它們亦從大氣中收集二氧化碳與水,以便創造碳水化合物供其生長所需。Wang 的團隊希望模仿這種過程,從大氣中捕捉二氧化碳,減少碳排放,並將之轉換成烴(hydrocarbon,碳氫化合物)燃料。

-----廣告,請繼續往下閱讀-----

「我們正試圖模仿植物所做的事,以便將日光轉換成能源,」Sun 表示。「我們希望在不久的將來,我們的『奈米樹』結構最終能成為一種有效率的裝置,進行光合作用時猶如一顆真正的樹。」

該團隊也在研究氧化鋅的替代品,那吸收太陽光的紫外線,不過會有穩定性的問題,影響奈米樹結構的使用壽命。

原始文獻:Ke Sun, Yi Jing, Chun Li, Xiaofeng Zhang, Ryan Aguinaldo, Alireza Kargar, Kristian Madsen, Khaleda Banu, Yuchun Zhou, Yoshio Bando, Zhaowei Liu and Deli Wang.  Nanoscale, 2012, 4, 1515-1521   doi: 10.1039/C2NR11952H

資料來源:PHYSORG:Nanotrees harvest the sun’s energy to turn water into hydrogen fuel[March 7, 2012]

-----廣告,請繼續往下閱讀-----

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
紅紅的葉子要怎麼行光合作用?紅葉和黃葉裡也有葉綠素嗎?——《樹葉物語》
時報出版_96
・2023/10/29 ・2029字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

顏色會依照我們觀看的對象吸收和反射的光而有所不同。樹葉因為會吸收所有藍色和紅色系光譜,只反射綠色,因此看起來是綠色的,而讓樹葉顯現綠色的東西,便是負責養育生命的葉綠素。

需要光合作用時也只會紅通通的日本紅楓

當然,也有葉子不是綠色的。樹木一生中雖然會變換顏色,但也有一開始長葉就不是綠色的。關於這類樹木,首先想到的便是日本紅楓(Acer palmatum ‘Shojo-Nomura’)。

日本紅楓連剛冒出葉子時也不泛綠色,和它的名字一模一樣,打一開始就很紅。那麼,日本紅楓紅色的葉子裡沒有葉綠素嗎?如果缺少葉綠素,樹木無法行光合作用;若不行光合作用,將無法製造生存所需的養分,那究竟該如何生存呢?

所有樹葉裡都有葉綠素,但是除了葉綠素,還有類胡蘿蔔素、花青素和單寧等各種成分,我們需要從這裡找出頭緒。類胡蘿蔔素、花青素和單寧等成分分別呈現黃色、紅色和褐色,葉子雖然從一開始就具備多種顏色的成分,但在更需要光合作用的時候,葉綠素會上來表面;待過了秋季,逐漸接近無法行光合作用的冬季,其他顏色的成分才會開始活躍,秋楓便是如此。然而,日本紅楓即使在需要光合作用的時期,葉子也只會紅通通的,非常奇妙。

-----廣告,請繼續往下閱讀-----

淺綠色顯露出來的瞬間

圖/wikimedia

日本紅楓是人們培育出來的品種,以做為造景用的觀賞樹木。換言之,日本紅楓並不是在自然狀態下生長的樹木,而是人們為了更長時間觀賞楓樹的紅色葉子所培育的品種,讓它一年四季都能呈現紅色。雖說紅色葉子裡頭同時含有泛綠色的葉綠素,但不管再怎麼看,都看不到綠色。

我再次重申,觀察樹木需要長時間、仔細地觀察。日本紅楓葉子上的紅色氣息轉淡的現象一年大概會發生兩次,分別是開花與果實逐漸成熟時,也就是樹木最需要養分的時刻。這時的日本紅楓葉子會發生非常細微的變化,乍看之下無法得知其差異:仍然泛著紅色,仔細觀察卻能在葉子某些部分感覺到綠色的氣息。

雖然葉子顯現紅色,但葉綠素若不進行光合作用,樹木就無法存活,在開花和結果等需要大量養分的關頭更是如此,這種時候只要仔細確認日本紅楓的葉子,將能感覺到葉綠素行光合作用活動的跡象。葉子上面延展的葉脈或葉柄端的紅色會轉淡,非常顯眼。果實結果和逐漸成熟時也一樣,可以在變淡的紅色之間突然看見綠色。即便葉子是紅色的,葉綠素還是會在它非常迫切需要養分時活躍起來,無怪乎顯現了綠色。

黃金松的樹葉只有黃色嗎?

日本紅楓是人工選育的品種,但自然狀態下也有樹木不是發綠色的芽,好比名為黃金松(Pinus densiflora ‘Aurea’)的樹木。雖然松樹的葉子一年四季都是綠色,黃金松的葉子卻呈金黃色。黃金松是松樹的品種之一,是相當稀有的樹木,它只有下方呈綠色,整體看來葉子是金黃色的。據說從以前開始,只要天氣乾旱,黃金松的金黃色葉子就會變成褐色,梅雨季則變成綠色,對於觀察氣候十分必要,不過這種說法並無科學根據。儘管如此,據說以前農夫們乾脆叫黃金松「天氣木」。

-----廣告,請繼續往下閱讀-----
非常稀有的黃金松是在自然狀態下也會發金黃色、而不是綠色的芽。

韓國曾經發現幾棵自然狀態下的黃金松,特別是慶尚北道蔚珍郡周仁里的黃金松就被指定為地方紀念物,是一株受到保護的珍貴樹木。這棵黃金松曾是預測氣候的標準,村裡亦相傳若發生戰爭,它的葉子會泛紅。

蔚珍郡周仁里的黃金松和旁邊其他樹木的葉子顏色不同,一眼就能清楚看出來。這棵佇立在斜坡上的樹木已有五十歲左右,由於被指定為文化財,四周圍上了柵欄、被確實地保護著。雖然遠處就見得到它神祕的模樣,但務必近距離觀察。必須仔細觀察葉子,才能得知樹木的祕密,知道樹木如何用金黃色的葉子製造養分、使自己生長。

即便植物圖鑑裡記載「除了葉子的基部,其他都是黃色」,實際上再怎麼觀察,仍然很難說是黃色,非要講的話,比較接近綠色和黃色混合在一起的淡綠色。當然,顏色以針葉來說算特別,但不能說是黃色或金黃色。與其說黃金松的葉子是金黃色的,不如說是以綠色為底,黃色顯現得稍微強一點。

無法丟掉綠色的原因

我們談日本紅楓和黃金松,但擁有紅葉或黃葉的樹木不只這些,尤其是觀賞用的培育品種中,還有不少葉子的顏色相當五彩繽紛。然而,不管是哪種樹木,都無法完全丟掉綠色,因為綠色是葉綠素的顏色,而葉綠素是樹木的生命之窗。

-----廣告,請繼續往下閱讀-----

——本文摘自《樹葉物語》,2023 年 5 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

15
9

文字

分享

0
15
9
太空種電?不受天氣影響的發電廠登場,人類將迎來能源自由?
PanSci_96
・2023/08/12 ・4585字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

要核能、綠能、還是天然氣?大家不用吵了,因為讓我隆重介紹,宇宙太陽能準備登場,地球將進入能源自由,人類文明將邁入下一個時代!

雖然只是邁入第一步,但我沒有在開玩笑,美國、日本、歐盟、英國都陸續展開宇宙太陽能計畫,預計在太空中布下大量太陽能板,將取之不盡的能量,不分晝夜、不分天氣地將能量源源不絕的傳回地球。而且第一階段的測試,已經在宇宙中測試成功了!

宇宙太陽能真的可行嗎?我們離能源自由,還有多遠?

為什麼要去太空中進行太陽能發電?地面太陽能的困境

台灣要選擇哪種能源配比,各方論點各有道理。而同樣的問題,不只是台灣,對世界各國來說都是爭論不休的議題。面對這樣的困境,竟然有人提議往太空探索,去太空中進行大規模太陽能發電,並將能量傳回地球,成為宇宙太陽能電廠,一舉解決所有能源問題。可是就算不去太空,在地面上的太陽能近年來成長迅速,安裝量和產量都持續增加,為什麼非得跑到太空中去做一樣的事呢?

-----廣告,請繼續往下閱讀-----

雖然太陽能板的設置成本近年來降低很多,能不能穩定發電卻要看老天臉色,而且需要的佔地面積廣大。世界上只有少數幅員廣大,日照充足的國家可以打造 GW 等級的太陽能發電廠,像是印度,中國,以及中東地區。許多地方例如台灣,多以民間業者小規模發展為主,很難建設大規模的太陽能發電廠,如果要大規模使用農地、魚塭、屋頂種電,也有許多問題等待解決。

不過只要把太陽能搬到外太空,就可以大喊:「解開束縛、重生吧!太陽能,我還你原型!」

首先,太空中可以接收到更多的陽光。由於太空中沒有夜晚,所以軌道上的衛星幾乎可以 24 小時暴露在陽光之下。此外,太空中的陽光不會像地面上的冬天或傍晚,有傾斜入射的問題。太陽能板可以隨時指向太陽的方向,和太陽光的方向保持垂直,接受百分之百的陽光照射。根據計算,同一塊太陽能板放在太空中可以接受到的陽光量至少是地表的三倍以上。

地球上陽光傾斜入射的問題示意圖。圖/PanSci YouTube

另外,地球的大氣其實幫我們阻隔了許多陽光,保護地表上的我們不會被瞬間曬傷。就算是晴朗無雲的日子,大氣層還是會散射掉許多的陽光。太空中的太陽輻射比地表強上不少,大約多了 40% 左右。

-----廣告,請繼續往下閱讀-----

綜合前面所說的,只要把現有的光電材料放到衛星軌道上,就可以輕鬆獲得約四倍的發電量。此外還不需要任何占地,不會對環境生態帶來負面影響。

太空種出的電要怎麼運回地球?

你可能會好奇,在太空中收穫這麼多太陽能,要怎麼運回地球給大家使用呢?難道要存在電池裡再回收嗎?科幻大師艾西莫夫早在 1941 年就想過這個問題了。在他的短篇小說《理性》中,各個太空站會再收集太陽能之後,用微波光束將能量傳送至不同行星,也就是遠距無線傳輸能量。

雖然這種技術在當時屬於科幻情節,但現在的我們知道這樣的技術在原理上可能辦到的。在我們介紹無線獵能手環那集,我們有提到電磁波傳遞能量的問題,就是能量會以波源為中心向外發散,並且能量隨著距離快速衰減。想要高效率傳輸能量,如果不想接條線,就必須使用指向性的波源,將能源都集中到一點。

現在,我們使用多個天線組成陣列,並調整他們的相位,讓各個天線發出的微波產生干涉,形成筆直前進的單方向微波束,將能量精準發射到遠處的一個點。除此之外,因為選擇的電磁波頻段是微波,就像手機訊號可以穿過牆壁到你的手機一樣,特定頻率的微波也能穿透大氣層或雲層的阻擋。即使地球上的我們是下雨天,宇宙太陽能仍能透過微波將能量傳至地表,大幅降低天氣造成的影響。

-----廣告,請繼續往下閱讀-----

所以,只要把所有太陽能板發射到地球同步軌道上,讓它們在軌道中展開,組裝成大還要更大,邊長長達數公里的超大太陽能板。這樣空中太陽能發電廠就會一直維持在天空中的某一點,地面的我們,只要蓋個微波接收站就可以了。當然要將所有設備發射到地球同步軌道上所費不貲,較可行的做法是先用火箭將衛星射入高度較低的低地球軌道中,再利用衛星本身的離子噴射等方式把自己慢慢推到地球同步軌道。

太空太陽能發電廠概念圖。圖/Space.com

這個主意,在 1968 年工程師 Peter Glaser 就在 Science 期刊上提出,還向美國政府申請了專利。當時,美國能源局和 NASA 也覺得這個概念挺「有趣」的,針對宇宙太陽能做了一系列的調查並提出了正式的可行性報告。不過當時各方面的技術未成熟,無法進行測試。最重要的是,要把一整個太陽能發電廠射到太空,實在要花太多錢,產出的電根本就不敷成本。

好消息是,太空運輸成本近年來已經降低很多。SpaceX 的獵鷹九號火箭將每公斤物質運到低地球軌道的成本,只需要約三千美元,是過去使用太空梭運載的二十分之一。這讓宇宙太陽能的可能性,從僅只於科幻,搖身一變成為潛力無窮的未來能源。

宇宙太陽能離我們有多遠?

從美國、英國、歐盟到日本,都已經放話要加入這場全新的太空能源競賽。領跑者之一是日本的太空機構,宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組,是有生之年就能看到的成果!

-----廣告,請繼續往下閱讀-----
從宇宙航空研究開發機構 JAXA,預計在 2025 年前後展開從太空向地面送電的實驗,並在 2030 年左右開始試運轉宇宙太陽能機組。圖/PanSci YouTube

這個時程也不是信口開河,日本在 1980 年代左右便開啟了宇宙太陽能計畫。經過數十年的規劃與研發, JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。這個實驗相當重要,因為在發射成本的問題解決之後,宇宙太陽能要面對的下一個難題,就是如何有效地從外太空軌道遠距送電。雖然我們已經知道可以透過干涉的方法,讓微波束直線前進,但實際運作時,還是會有一個很小的發散角,不會完全平行。

JAXA 已在 2015 年進行地面測試,成功將電能傳輸到 55 公尺外的接收天線,驗證遠距傳輸能量的可行性。圖/PanSci YouTube

失之毫釐。差之千里。地球同步軌道離地表可是有三萬六千公里,小小的發散角到地面就會嚴重發散,地面的接收天線尺寸也不可能無限擴張。這任務的難度差不多等於要從操場的一端用雷射筆打到另一端的蚊子,非常困難。JAXA 的天線雖然目前還未達到需要的準度,但是發散角已經能控制在 0.15 度左右,足以從較低的低地球軌道傳輸能量回地球,做初步的測試。

從還處在規劃階段的日本,瞬間移動到地球的另一端,美國的研究團隊,在這個月已經宣布取得重大突破。加州理工學院的宇宙太陽能計畫在今年初,成功讓一個小型測試模組,乘著 SpaceX 的獵鷹 9 號前進低地球軌道,進行太空中的實際測試。這個小型模組包含三個小實驗。第一個實驗是測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。第二個實驗則是要在 32 種不同的光電材料中,找出哪種在太空中效果最好。第三則是要測試微波傳輸能量在太空中的可行性。

測試宇宙太陽能板的結構、封裝、以及展開並組裝的程序。圖/caltech.edu

就在今年的 6 月 1 號,團隊宣布他們設計的可彎曲天線陣列,在太空中成功傳送能量到三十公分外的接收天線,點亮了 LED 燈。雖然距離只有短短的 30 公分,但是整個實驗暴露在外太空的環境中進行,證明他們的設計可以承受最嚴苛的環境條件。做為測試,他們也嘗試讓天線發射能量到遠在地球表面,大學實驗室的屋頂上。並且,還真的被他們量測到了數值。儘管規模不大,但這是宇宙太陽能第一次的軌道測試,結果相當振奮人心。

-----廣告,請繼續往下閱讀-----
可彎曲天線陣列。圖/PanSci YouTube
右方為可彎曲天線陣列(發射端),左邊為接收端的 LED 燈泡。圖/caltech.edu

如此看來,技術的發展似乎相當樂觀。可是要用於民生發電,成本是很大的重點。宇宙太陽能真的符合經濟效益嗎?或是我們該把資源留給其他選項呢?

宇宙發電廠符合經濟效益嗎?

根據美國能源情報署 EIA 的資料,1GW 發電容量的發電廠,傳統燃煤發電廠的初期建設成本,大約是一千億台幣,核電廠大約是兩千億台幣。那宇宙太陽能呢?每 1kW 的發電需要二十公斤的材料,1GW 就需要兩萬公噸。目前 SpaceX 獵鷹重型火箭運送每公斤材料進入軌道,需要三萬台幣。也就是說,光是將設備全部送上太空的運輸成本,就需要六千億的驚人花費。再加上太陽能板與相關設備的建置成本,以地面型太陽能發電廠為參考的話,大概還要多花500億台幣。而 JAXA 方面的預估,打造第一座 1GW 宇宙太陽能至少需要一兆兩千億日圓,雖然比我們用獵鷹重型火箭預估的還要低,但仍是一筆龐大費用。

各種發電方式的成本與性能表現。圖/美國能源情報署 EIA

那宇宙太陽能真的只是將鈔票往太空撒,空有理想的計畫嗎?當然不是,有兩個讓科學家不放棄的理由——首先是未來建造成本一定會下修。太空的發射成本相比 50 年前,已經少了兩個零,在 SpaceX 的發展下,還在持續地快速減少。另一方面,太陽能材料的輕量化工程也持續在進行,每 kW 發電重量只有十公斤或以下的太陽能材料已經不是虛構。新式的太陽能材料,我們未來也會陸續介紹。這兩個因素加乘在一起,一兆兩千億日圓的成本,很有機會在幾年內就減少為十分之一或更少。

發射火箭的成本逐年降低。圖/futuretimeline.net

更重要的是,宇宙太陽能一但建置完成,就會成為可做為基載能源的再生能源,減少對石化燃料的依賴。甚至因為主要設備都在太空,地面只需要建設接收站,可能將解決許多偏遠地區的能源問題,一舉改變全世界的能源型態。而且與許多八字還沒一撇的發電方式相比,宇宙太陽能已經算是距離現實很接近的選項,也難怪各個國家紛紛搶著要發展這塊領域。不過雖說是永續能源,還是有許多方面值得深入研究。例如要把幾萬公噸的材料射到軌道中,需要排放多少的火箭廢氣?一但規模化,這些巨大的宇宙太陽能板是否會成為小行星的標靶,或在一次的太陽風暴過後,讓軌道中堆滿太空垃圾?

-----廣告,請繼續往下閱讀-----

宇宙太陽能究竟能不能成為可靠的新興未來能源,從想都不敢想,到開始精算成本,相信我們很快就會知道答案。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。