Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

發現出血性登革熱的治療黃金期!

葉綠舒
・2016/03/30 ・2419字 ・閱讀時間約 5 分鐘 ・SR值 498 ・六年級

2014 與 2015年台灣南部都爆發嚴重的登革熱(Dengue fever)疫情,其實不只台灣,全世界每年有超過五億人感染登革熱!其中 80% 是無症狀或輕症,只有 5% 的病患會出現較嚴重的症狀。

圖/deviant art @ real-k
圖/real-k @ deviant art

登革熱以數種黑斑蚊屬(Aedes)為病媒散播,原本只出現在東南亞,在二次世界大戰後變成遍佈全球的疾病。如今全世界有 110 個國家都有登革熱,每年造成一萬至兩萬人死亡。

一般來說,登革熱的死亡率低於 1%,但如果是第二次感染或是嬰兒第一次感染,但媽媽曾感染登革熱,便有機會發展成出血性登革熱(Dengue Haemorrhagic Fever,簡稱DHF)。出血性登革熱患者會出現皮膚紅斑、臟器出血、伴隨著血小板低下等症狀。一旦發展成出血性登革熱,即使有治療,死亡率也會達到 2-5%,若沒有治療則可高達 50%,實在是非常危險。

近年來,由於全球暖化與人口移動頻繁,使得登革熱漸漸成為一種全球性的傳染病;雖然一般的登革熱症狀不嚴重、死亡率也低,但是出血性登革熱的威脅卻不可忽視。特別是登革熱輕症常被誤會成流感,若患者身體健康良好,很可能就自己去購買成藥服用,因此疫區內的人們,誰也不敢保證一旦罹患登革熱,究竟會不會就發展成出血性登革熱呢?

-----廣告,請繼續往下閱讀-----

過去的研究知道,出血性登革熱是因為登革病毒感染會引發自體抗體(autoantibodies)的產生;這些抗體在體外的(in vitro)研究中發現,在登革病毒存在時,它們與病毒形成複合體,大量感染白血球,可能因此造成血管內皮細胞與血小板被大量的攻擊,造成血管損傷、血小板數目低下,最後造成皮下出血、臟器出血等病徵而死亡。

但是後續有許多研究發現,許多病毒在有抗體存在的狀況下都會有此現象。因此,究竟出血性登革熱是否真的是因為上述的現象而發生的呢?

慈濟大學生命科學院院長張新侯老師的研究團隊,花了好幾年的時間精益求精,建立了出血性登革熱的小鼠模型。為什麼要建立這個模型呢?由於出血性登革熱發生時,病人會因為血小板太少造成的內出血使得血壓急速降低而休克,產生所謂的登革熱休克症候群(Dengue Shock Syndrome,簡稱 DSS)。DSS 非常危險,若能提供動物模型作為治療的測試、從而建立有效治療的方法,便足以挽救上萬條生命!

不過,要發展一個理想的小鼠模型,實在不是一件容易的事。張老師的研究團隊,一開始嘗試著以靜脈注射的方式,分別將登革病毒與登革病毒所誘發的自體抗體各自打入小鼠。小鼠不但沒死,而且解剖時也發現,小鼠的臟器只有紅腫,沒有出血。

-----廣告,請繼續往下閱讀-----

這令人有點傷心,雖然小鼠不是人,或許因此症狀有不同;但沒能夠呈現與人一樣的症狀,的確是不夠完美。究竟要怎麼改善,才能夠建立一個十全十美的小鼠模型呢?

張老師苦苦地思索著,卻想不出改善的空間在哪裡?直到有一天無意中看到了施瓦茨曼反應(Shwartzman)的文獻。

圖/Joost Rooijmans@flickr
圖/Joost Rooijmans@flickr

1920 年代,在紐約西奈山醫院工作的喬治.施瓦茨曼醫師(Dr. George Shwartzman)在研究某些毒素如何在組織中產生血栓時,發現了這個現象。簡單來說,施瓦茨曼醫師發現,當我們的組織再次接觸到同一個毒素時,便會有這樣的現象發生。而要產生施瓦茨曼反應,病患要跟相同的毒素接觸兩次。但是,在施瓦茨曼反應裡,毒素是以皮下注射,而不是以靜脈注射的方式。

皮下注射?張老師忽然想到,或許皮下注射才是對的!

-----廣告,請繼續往下閱讀-----

於是,張老師便趕緊將病毒改為皮下注射方式打入小鼠。結果真是令人喜出望外!果然出現了臟器出血的病徵!完美的出血性登革熱的模式有了!

模式有了,接著就有得忙了!再接再厲地以這個模式進行研究時也發現了,出血性登革熱需要在登革熱病毒與自體抗體同時存在的狀況下才會出現,缺一不可。但是,病毒與抗體究竟誰要先出現,並沒有絕對的關係。

怎麼說呢?以嬰兒出血性登革熱為例,小寶寶是先由媽媽得到登革熱的自體抗體後,再接觸到病毒。而成人在第二次感染時所發展出來的出血性登革熱,則是先有病毒再有抗體。

張老師的研究團隊也進一步在小鼠中證明,當以出血性登革熱病人血中登革病毒效價與非致病濃度之自體抗體同時存在於宿主體內時的確會造成血管損傷與臟器出血!這是第一次在活體中(in vivo)明顯到觀察到這樣的現象。過去其他研究團隊都只能以高量的病毒來重現出血性登革熱的症狀,但是在活體內要有這樣高濃度的病毒很難啊!可是這次張老師的研究團隊卻是以較低濃度就達成了!

-----廣告,請繼續往下閱讀-----

張老師的研究團隊,除了建立小鼠的出血性登革熱模型之外,他們同時也以數種目前已經有在使用的藥物,如:腫瘤壞死因子α(TNFα)的拮抗劑 Etanercept 等,針對這個模型進行試驗,發現這些藥物如果在適當的時機下使用,對於出血性登革熱是有治療效果的;同時也對於出血性登革熱的致病機轉有更多的了解。

TEM 顯微鏡下看到的登革熱病毒,在圖中黑黑圓圓聚集成一群。圖/wikipedia
TEM 顯微鏡下看到的登革熱病毒,在圖中黑黑圓圓聚集成一群。圖/wikipedia

張老師的團隊在建立小鼠模型的過程中,也發現出血性登革熱存在著一個「治療黃金期」。如上圖所示,當病毒進入宿主體內後,病毒的濃度大約在發病(發燒)前一天開始上昇(viral load,藍色三角形);而自體抗體則在發燒後兩天開始出現(DENV-elicited autoantibodies,綠色三角形)。在這段期間,病毒的濃度持續升高,直到自體抗體出現後,病毒濃度開始下降。下降後大約 24-36 小時,出血性登革熱(DHF,紅色)的症狀就出現了。

圖/Thrombosis and Haemostasis
圖/Thrombosis and Haemostasis

治療黃金期在哪裡呢?就是當病毒濃度在體內達到高峰並開始下降、體內的自體抗體卻逐漸上昇的時候。研究團隊利用這個小鼠模型,測試了幾種藥物(如 Etanercept、IVIg)都有不錯的療效,但因為它們都屬於免疫抑制劑,若使用於發病初期,只怕會對病人有不好的影響;但如能用在病毒濃度開始下降、自體抗體濃度上昇,但出血的症狀尚未出現的時候,對於出血性登革熱的治療應該會有相當好的效果。

參考文獻

Te-Sheng Lien et. al. 2015. Dengue virus and antiplatelet autoantibodies synergistically induce
haemorrhage through Nlrp3-inflammasome and FcγIII. Thrombosis and Haemostasis. http://dx.doi.org/10.1160/TH14-07-0637. 113: 1060–1070

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
2

文字

分享

0
4
2
今夏登革熱來勢洶洶,該怎麼防治?有疫苗嗎?
PanSci_96
・2023/09/21 ・2680字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「啊!蚊子!」

登革熱好嚴重,但,還會更嚴重。過往紀錄顯示登革熱的疫情高峰,常常到 9 月才大規模爆發?這聽起來有點反直覺,我本來還以為應該是最熱的 7、8 月?但其實啊,就是要等天氣稍微降溫,當大家開始出門,不是躲在冷氣房的時候,反而比較容易傳播登革熱。

而根據近期疾管署的統計顯示,台灣各地的登革熱已經發生 4,338 例本土病例,是從 2015 年登革熱在全台造成 43,419 例之後,登革熱疫情最嚴重的一年,我們真的要注意小心!只要出門,防蚊措施不能免!

不過……話說回來,難道就沒有疫苗可以一勞永逸預防登革熱嗎?

-----廣告,請繼續往下閱讀-----

好幾年沒聽說的登革熱,怎麼突然又「熱」起來?

這個我們就要講到台灣登革熱的發生模式,其實台灣沒有登革熱本土病毒株,所以每當登革熱疫情過去之後,登革熱病毒就會在台灣消失,而下一次的登革熱發生,就必須是境外移入的登革熱患者由國外輸入到國內,而且必須要在登革熱可被傳播的期間,被病媒蚊叮咬並傳播出去,才會造成本土的病例,所以從這點我們可以知道登革熱流行,有兩個有效的控制條件:第一、即時發現境外移入病例,直接隔絕病毒在境外。第二、控制台灣本土病媒蚊數量,以及密度,讓登革熱病毒難以傳播出來。

那過去幾年為什麼都沒有發生登革熱的流行呢?因為 2020 年開始因為 COVID-19 疫情封鎖國境,根據疾管署的資料,2020 年到 2022 年,這三年加起來全國僅有 144 例登革熱境外移入病例,而 2023 年至今已經有 158 例登革熱境外移入案例,而在 2015 年登革熱大流行時,更有 354 例境外移入案例,這也表示台灣登革熱疫情的發生,與境外移入登革熱案例息息相關。

臺灣 2023 年登革熱病例分布。圖/衛福部疾管署

尤其,台灣許多行業仰賴東南亞國家的移工,很多台灣廠商也在東南亞國家設廠,彼此之間的旅遊往來也越來越多,所以東南亞國家的登革熱疫情嚴重與否,與台灣是否會發生登革熱流行,有著高度相關。

把積水倒掉!杜絕登革熱,從減少病媒蚊產卵點開始

每年到了春夏交際時,政府都會宣導要防治病媒蚊,做好居家附近的環境衛生管理,大家耳熟能詳的【巡、倒、清、刷】四字口訣,為的是減少積水,那麼孳生源的減少,真的能夠有效防治登革熱發生嗎?

-----廣告,請繼續往下閱讀-----

這時我們要提到登革熱病媒蚊的生殖營養週期。週期的開始是一隻未吸血的雌蚊,開始尋找適合的吸血對象,在吸飽血後,這隻雌蚊需要等待約 2 到 3 天,讓體內的卵發育成熟,接著雌蚊就會開始尋找有水的地方產卵。而埃及斑蚊或白線斑蚊產卵場,都偏好小型的水域,就像廢棄輪胎內的積水、盆栽下方的接水盆等等,當雌蚊把卵都產下來後,就完成了一個生殖營養週期,接著她會再繼續尋找下一個吸血的對象,不斷循環下去。在實驗室內條件充足的環境下,最快 3 天就可以完成一個週期,而在野外一般環境中,科學家認為 5 到 7 天可以完成一次週期。

雌蚊吸飽血後,等待卵發育成熟,就會開始尋找有水的地方產卵。圖/Giphy

猜猜看一隻雌蚊一次可以產下多少卵?答案是 50-200 顆卵。也就是說,一隻雌蚊經歷一次生殖營養週期,假設生男生女一樣多,也就可以有 25-100 隻新出生的雌蚊。吸血的蚊子等於放大了 25-100 倍的數量,所以一隻蚊子在適合環境下,經歷三代之後最多就可以有 1,000,000 隻雌蚊產生。

我們透過蚊蟲的生活史反推,這僅僅只需要一個月左右的時間。

所以回到一開始的問題,把積水容器清除可以減少蚊蟲數量嗎?如果把你居家附近的積水容器清除的話,其實會讓蚊子找不到產卵的地方,你家附近的蚊蟲的確就會減少,其中一個特殊的現象就是,如果蚊子一直沒有辦法產卵,就會將體內的卵回收成為自身的營養,等待再進入一次生殖營養週期,因此減少雌蚊下一代,自然整體蚊蟲的數量就會減少。

-----廣告,請繼續往下閱讀-----

ADE 效應是什麼?有沒有疫苗可以防治登革熱?

除了防治病媒蚊以外,有沒有可以預防登革熱感染的疫苗呢?

其實,登革熱疫苗的開發非常困難,主要的原因是在人類中流行的登革熱病毒有四種血清型別,而不同型別之間的前後感染,有時候會造成前一型感染產生的抗體,幫助後面另外一型的登革熱病毒感染細胞,使病毒就更容易感染細胞,而這個現象也就是抗體依賴增強效應,簡稱 ADE 效應。

當 ADE 效應產生,也就容易造成較嚴重的病症,而 ADE 效應也是登革熱出血熱產生原因之一,也正是因為有 ADE 效應,登革熱的疫苗開發的難度相當大,因此這隻疫苗需要同時產生對抗四型登革熱的有效抗體,還要避免 ADE 效應的產生。

雖然有 ADE 這個大魔王擋在前面,那麼究竟能不能做出登革熱疫苗呢?

-----廣告,請繼續往下閱讀-----
登革熱疫苗的難度在於要克服 ADE 效應。圖/pixabay

其實,在 2015 年賽諾菲巴斯德藥廠曾經有世界上第一支可施打的四價登革熱疫苗 Dengvaxia,但這隻疫苗僅能夠使用在「感染過登革熱」的人身上,主要的原因,還是因為這支疫苗打在「未感染過登革熱」的人身上,當他們感染登革熱時,會產生 ADE 效應,反而變得更嚴重。

不過近期有了轉機,日本武田製藥的 TAK-003 已經完成三期試驗,在歐盟、英國、巴西、印尼、泰國、阿根廷獲得上市許可,根據 TAK-003 在新英格蘭醫學雜誌 NEJM 和柳葉刀 Lancet 發表的論文,在施打 2 劑後,12 個月可以達到 80.2% 的不感染保護力,18 個月後即便感染,也有 90.4% 的重症保護力,而在施打後 4 年半的持續追蹤,仍然保有 61.2% 的不感染保護力,而且對重度登革熱保護力也有 84.1%,更重要的是,跟 Dengvaxia 相比,不論是否曾經感染過登革熱,都可以施打這個新疫苗,不用擔心 ADE,除了 TAK-003 外,台灣還參與了默沙東藥廠的 V181 和默克藥廠的 TV003 兩支候選疫苗的臨床試驗,可惜的是,台灣還沒有通過 TAK-003 的上市許可。

但自從 1970 年代開始研發的登革熱疫苗,面對一道又一道難關,過了五十多年後,似乎終於有疫苗可以幫助人類對抗登革熱了!

登革熱正在蔓延中,你有什麼好的防蚊秘方嗎?你或認識的人得過登革熱嗎?當時的感受是什麼呢?歡迎與我們分享。最後也想問問,你會想打最新的登革熱疫苗嗎?

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

0

3
2

文字

分享

0
3
2
活體犧牲不再?讓蚊子吸食水凝膠去吧!
胡中行_96
・2023/03/02 ・2680字 ・閱讀時間約 5 分鐘

以往病媒蚊研究中,人類志願者及受試動物,得犧牲小我以造福蒼生。活生生地,讓蚊子叮咬並吸食他們的血液。現在,美國科學家用充滿動物血液的水凝膠餵蚊子;將來或許還能改為填充蛋白質營養液。[1]從此以後,科學家便能像主持以酒代血的天主教感恩祭,慷慨地對蚊子說:「你們大家拿去喝,這一杯就是我的血,新而永久的盟約之血,將為你們和眾人傾流,以赦免罪惡。」[2]

圖/Australian Department of Foreign Affairs and Trade on Flickr(CC BY 2.0)

餵食蚊子的水凝膠

1944 年科學家 Samuel Gertler 合成的化合物 DEET(中譯「待乙妥」或「敵避」),在二戰期間被美軍用來驅蚊。[3]之後各種防蚊成份的研究過程,仍免不了仰賴人類和動物的活體貢獻。隨著近年 3D 列印與生物相容水凝膠的技術發展,開發替代品的時機逐漸成熟。理想上,餵食蚊子的水凝膠製品,要具備高解析度的 3D 列印血管、擴散於組織中的血液、對多種蚊子的吸引力、低廉的成本,以及較少的動物實驗倫理問題。此外,最好還能搭配一組攝影器材,與相應的數據運算模型。[1]

2023 年 2 月,美國研究團隊於《前沿生物工程與生物科技》(Frontiers Bioengineering and Biotechnology)期刊上,介紹他們一體成形的嘗試成果。[1]

水凝膠的「食譜」

類似於做捲心酥,要先調配麵糊,烘烤定型,才能在裡面填充內餡。此實驗的第一個步驟,是製作稍後能注入血液,或者其他液體的水凝膠。研究團隊先把適當比例的聚乙二醇二丙烯酸酯(PEGDA)、明膠甲基丙烯(GelMA)、甘油(glycerol)、LAP 光敏劑檸檬黃食用色素(tartrazine),混合在一起。[1]透過數位光源處理(digital light processing),使原料遇光固化,將內有曲折空管的水凝膠薄片,3D 列印出來。[1, 4]每批產出3份水凝膠,費時約 23 分鐘。[1]

-----廣告,請繼續往下閱讀-----

接著,成形的水凝膠,被丟進磷酸鹽緩衝生理食鹽水(phosphate buffered saline),浸泡至少 2 天。這段期間內,多餘的色素會不斷流出,所以要勤換水,直到水質清淨。上述從頭到尾的程序,一旦商業量產,成本即可降低。如果在無菌環境中製造,還能冷藏儲存數月。[1]

注入液體

再來,就要幫捲心酥灌多元口味的內餡了。科學家購買了,已經去除凝血功能的研究級脫纖血(defibrinated blood)。[1, 5]依照要進行的實驗,將這些血液或是其他液體,裝進針筒。接著,用注射泵浦(syringe pump)和管路,將針筒裡的內容物以 100 μL/min的速率,推進水凝膠裡。此實驗過程中,一支針筒透過管路,最多連接 6 份水凝膠。[1]

蚊子實驗

美國科學家將多塊水凝膠,分別放置於幾個玻璃罩內。每個罩子裡,引進 20 至 30 隻母蚊子,當作主要的觀察對象。[1]由於母蚊子吸血是為了產卵,所以裏頭還加上幾隻公蚊子作陪,來促進其食慾。[1, 6]攝影機全程對準水凝膠,記錄蚊子的活動,時間總長約 30 至 45 分鐘。[1]基於個別實驗的目的,方法設計上稍有差別:

  1. 餵食觀察:使用充滿血液的水凝膠餵食蚊子,調整溫度與設備,替換蚊子的品種,並優化攝影機的紀錄。簡單講,就是做不同的嘗試,為後面的實驗打好基礎。[1]
  2. 食物選擇:為蚊子奉上動物血液、紅墨水和磷酸鹽緩衝生理食鹽水,三種「口味」的水凝膠,並貼心熱菜到37°C。後二者沒什麼營養價值,單純想看牠們好不好騙。[1]
  3. 防蚊成份:3個玻璃罩裡,血液飽滿的水凝膠,都溫熱至37°C,但分別為沒塗料、塗抹DEET,以及敷上一層檸檬尤加利油(lemon-eucalyptus oil)萃取物。測試蚊子會不會因為外層的化合物,放棄吸食水凝膠裡的血液。實驗重複5次,受試的蚊子也每次更換。[1]
A. 充滿血液的水凝膠;B. 配有攝影機的玻璃罩;C. 建立辨識蚊子的運算模型;D. 不同的蚊子品種、液體和防蚊成份。圖/參考資料1,Figure 1(CC BY 4.0)

結果與展望

餵食觀察的錄像,歷經截圖、挑選、標註和校正等程序,成果被拿來訓練電腦找蚊子。於嘗試及調整後,此運算模型不僅能辨識影片中的蚊子,還會分別「未進食」與「進食中或吸飽血」的腹部形狀,平均準確率高達 92.5%。這個模型,馬上被運用在後面的實驗裡。[1]

-----廣告,請繼續往下閱讀-----

在選擇食物時,紅墨水和磷酸鹽緩衝生理食鹽水,顯然騙不過受試的蚊子;牠們唯獨吸食有動物血液的水凝膠。未來研發蛋白質營養液時,也可以用雷同的方式,評估蚊子的接受程度。為了引誘牠們,以後也能加碼在水凝膠上,塗抹真實皮膚會有的化學物質,並且在附近散佈二氧化碳。若是成功了,成品就能在其他病媒蚊實驗中,替代動物血液。如此便減少血液傳播疾病的風險,[1]以及使用動物血液的倫理問題。

另一個實驗的 DEET 和檸檬尤加利油萃取物,一如預期地令蚊子完全不想靠近。倒是沒塗料的對照組,卻意外只有 13.8% 的低餵食率。科學家覺得應該歸咎於水凝膠太小,有些蚊子擠不進去。將來製作時,得加大表面積。[1]

A. 截圖、標註、校正、訓練運算模型,並評估成果;B. 未進食(正紅色)與吸血(桃紅色)。圖/改作自參考資料1,Figure 2局部(CC BY 4.0)

整體而言,論文的第一作者 Kevin Janson 博士,很滿意這個自動分析功能,迅速又穩定的運算模型。在研究驅蚊效果方面,身為論文作者之一的 Omid Veiseh 教授,則認為他們的設計,未來也可以用於測試其他化合物。至於病媒蚊的品種,此實驗主要採用的,是會傳播黃熱病(yellow fever)、登革熱(dengue fever)和茲卡熱(Zika fever)的埃及斑蚊(Aedes aegypti)。另一位作者 Dawn Wesson 教授表示,假使想套用此模型跟設備,在習性迥異的野生品種上,就得再花時間研究。[7]

  

-----廣告,請繼續往下閱讀-----
  1. Janson KD, Carter BH, Jameson SB, et al. (2023) ‘Development of an automated biomaterial platform to study mosquito feeding behavior’. Frontiers Bioengineering and Biotechnology, 11:1103748.
  2. 教學方案」天主教台北總教區教理推廣中心(Accessed on 23 FEB 2023)
  3. American Chemical Society. (20 JUN 2020) ‘N,N-Diethyl-m-toluamide (DEET)’. Chemistry for Life.
  4. A Dowon, Stevens LM, Zhou K, et al. (2020) ‘Rapid High-Resolution Visible Light 3D Printing’. ACS Central Science, 6 (9), 1555-1563.
  5. Technical Support – FAQs’. Thermo Fisher Scientific. (Accessed on 23 FEB 2023)
  6. Harrison RE, Brown MR, Strand MR. (2021) ‘Whole blood and blood components from vertebrates differentially affect egg formation in three species of anautogenous mosquitoes’. Parasites Vectors 14, 119.
  7. Gillham AB. (09 FEB 2023) ‘Human test subjects may no longer be needed for mosquito bite trials thanks to invention of new biomaterial’. Frontiers Science Communications.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。