0

0
0

文字

分享

0
0
0

科學研究能吃嗎?粒子加速器的食用價值——抖宅翻譯蒟蒻

科學大抖宅_96
・2016/03/11 ・3530字 ・閱讀時間約 7 分鐘 ・SR值 558 ・八年級

自從大抖宅開始進行物理研究之後,第二常被問到的問題便是:「這能當飯吃嗎?有什麼食(實)用價值?」雖然知識確實不能吃,許多基礎科學研究乍看之下對日常生活也不會有什麼影響,但若只以「能否拼經濟」、「是否實用」來作為學術的評價標準,恐怕是忽略了科學影響世界的過往歷史——當我們回顧許多重大的科學發現,才會驚訝地察覺:科學研究的價值,往往超乎了人類的預期。

source:wikimedia
赫茲(Heinrich Hertz)source:wikimedia

著名的科學家赫茲(Heinrich Hertz),在十九世紀80年代用實驗證實了電磁波的存在,而當他的學生追問其實用價值時,他給的回答則是「沒什麼用。」[1]但是,一百多年後的今天,電磁波卻無所不在地應用於我們的日常生活中(也包含了我們現在正閱讀的電腦或手機)!

又如,我們常常用到的GPS全球定位系統,也運用了相對論的原理,對人造衛星上的原子鐘進行時間的校準。如果少了相對論的修正,衛星定位就沒辦法精確計算出我們的位置。不過,一百年前愛因斯坦提出相對論時,大概也不能預知其在日常生活可以有這樣子的應用。同樣地,當時的人若以實用性來評斷相對論的價值,依現在的眼光來看,那就是大錯特錯了。

科學往往以我們想像不到的方式,顯露出其寶貴之處:可能是在多年以後、也可能是在沒人料到的層面、甚或可能是永遠改變了我們對身處宇宙的理解。誠如某部電影(有嗎?)的知名台詞:「科學就像一盒巧克力,你永遠不知道得到的會是什麼。」*對許多人文、藝術領域,這甚至也同樣適用——馬上可以有的產值,往往無法代表事物真正的價值。實務上,我們也不可能未卜先知哪個研究成果會被廣泛運用,才去做相關研究。

-----廣告,請繼續往下閱讀-----
  • *y編按:原句為:人生就像一盒巧克力,你永遠不知道你會拿到哪種口味。「Life is like a box of chocolates. You never know what you’re gonna get.」from 阿甘正傳 (Forrest Gump), 1994. 用在科學研究別有一番滋味啊。

同時,有許多的科學實驗,雖看似跟生活毫不相干,但其背後運用到的技術,其實也與現實生活裡的科技發展相輔相成、互相提攜。例如,印象中像粒子加速器這麼炫的東西,似乎只會在尖端的基礎物理實驗中出現;然而,英國的蘭卡斯特大學(Lancaster University)講師Graeme Burt,便針對粒子加速器的生活應用,做了如下的詳細介紹。總而言之,求知慾是人類最珍貴的寶物之一,而科學研究,則正是人類邁向知識瑰寶的必經路徑。[2]基礎科學作為科學的基礎(這不是繞口令),就跟5566一樣不能亡呀![3]

粒子加速器改變世界的五種方式(不考慮希格斯玻色子在內)—— Graeme Burt [4]

美國洛斯阿拉莫斯國家實驗室的電子加速器一隅 Los Alamos National Laboratory/Flickr, CC BY-NC-ND
美國洛斯阿拉莫斯國家實驗室的電子加速器一隅 Los Alamos National Laboratory/Flickr, CC BY-NC-ND

大型強子對撞機或許是世界上最知名的科學實驗設施了。在2013年,這個位於阿爾卑斯山山腳、周長27公里的環狀粒子加速器證實了希格斯玻色子的存在,並一舉攫取了全世界的注意。這幫助物理學家確認了,我們用以解釋宇宙運作的關鍵理論是正確的——此無疑是科學上重大進展。但粒子加速器在我們的日常生活中,其實也有著巨大的影響力。甚至,如果沒有它,就連耶誕節都會變得跟現在不一樣。

粒子加速器乃是利用電場,將構築物質的基本組件[5]加速至非常高的速度/能量。所謂電場,則是由帶電的物體,例如靜電荷、或高電壓儀器,所創造出的隱形力場。

-----廣告,請繼續往下閱讀-----

起初,這些裝置之所以被發明,是用來研究當粒子互相碰撞、或者撞擊標的時,會發生什麼事情。這樣的實驗讓我們能夠去了解粒子、了解我們周遭的世界,以及了解核子物理學(原子核的學問)。其實單從知識面本身來看,那就已經對許多科技的發展而言至關重要,像是醫院裡的磁振造影[6]掃描儀(MRI scanner),和核能發電廠。

同時,也有中型的加速器,其所產生高強度的光或中子,讓物理學家、生物學家、和藥理學家可以研習材料、病毒、蛋白質與醫藥,並導致數不清的諾貝爾獎、以及嶄新的藥物和疫苗。它們甚至被巧克力和冰淇淋製造商拿來利用:以X光[7]探究不同晶體結構的形成,以研發出最美味的產品;或研究如何避免冰淇淋裡出現冰塊或變成粉狀。

然而,最常見的粒子加速器並不是那個周長27公里的龐然大物,而是充斥在我們周遭的小型工業用或醫藥用加速器。

一、對付癌症

粒子加速器在現代醫療保健扮演了舉足輕重的角色。正子斷層掃描儀(PET scanner)會使用到的同位素,通常就是在粒子加速器裡被製造出來;再者,放射線治療(radiotherapy)與成像(imaging)所需要的X光,就是由加速後的電子射向標靶而產生的。在英國,國家健康服務(National Health Service,NHS)正分別在曼徹斯特的克里斯蒂醫院和倫敦大學學院(University College London)醫院建造特殊的放射線治療中心,其將使用質子,而非一般的電子,來從事放射線療法——這讓治療能夠容許更大的標靶藥物劑量,並且減低對周遭組織的傷害風險。

-----廣告,請繼續往下閱讀-----

二、預防恐怖攻擊

為了增加安全性,放射線療法裡的X光源,也廣泛地在港口和機場被使用。這項科技可以用來掃描貨物,以確保不會有任何東西走私進來。因著大多數貨物尺寸的緣故,需要有粒子加速器來產生足夠高能量的X光。藉由兩種相異能量的X光,我們甚至可以辨別出不同的材質(用中子做掃描也可以做到類似的事情)。新一代的掃描儀甚或能夠從X光(照到標的物後)的散射而辨識出毒品或者炸藥。

三、保護環境

由粒子加速器來的X光還有著便利的副作用:消滅細菌和蟲子;所以它們也被用在消毒設備,與煙草、穀物或香料上——殺死小蟲子進而減少耗損。它們也能分解廢水或廢氣裡的有害成份以保護環境。

四、製造行動電話

粒子加速器產生的電子或X光亦有許多工業用途。它們可用來活化在塗料或複合纖維裡的某些分子,使其乾得更快;這個步驟——稱為固化(curing)——被廣泛使用在包裝盒的印刷、或者飛機零件的製造上。若少了固化程序,企業就只能靠龐大的倉庫暫且存放物品,以等待它們乾燥。它們也能改變寶石的顏色,例如:加速器可以將天然無色或棕色的黃玉(topaz),轉變成好看、帶藍色的黃玉[8]。粒子加速器亦被運用來在半導體上佈植離子,以量身打造其在電子儀器(例如行動電話晶片)上的作用。

藍色的黃玉Blue topaz Craig Kohtz/Flickr, CC BY-NC-ND
藍色的黃玉Blue topaz Craig Kohtz/Flickr, CC BY-NC-ND

五、拯救耶誕節

粒子加速器另一個常見的用途是在交叉鏈接(cross-linking)[9]上;粒子被拿來打斷材料裡的聚合物鏈,好讓它們能夠重新結合成更強勁的組態。最常見的如:讓電纜裡的塑膠具抗熱性、或是製造收縮膠膜(shrink wrap)[10]以確保你的耶誕火雞新鮮——塑膠事先被拉伸並接受電子束的撞擊,如此一來,當其日後受熱,就會再收縮回原先(拉伸前)的尺寸。這給了我們強韌又緊密的包裝,以保護你的火雞遠離有害細菌。

-----廣告,請繼續往下閱讀-----

參考資料:

  • 1. Graeme Burt (2016) Five ways particle accelerators have changed the world (without a Higgs boson in sight)

註釋:

  • [1] 故事參考自〈科學史上的今天〉,二月二十二日赫茲誕辰
  • [2] 礙於篇幅,在此僅稍做著墨,也推薦對議題有興趣的讀者可以閱讀三分鐘科學的好文
  • [3] 出自台灣本土連續劇《世間情》的劇情。5566為台灣男子偶像團體。
  • [4] 原文請參考 The Conversation
  • [5] 譯註:物質由原子組成;原子又是由電子和原子核(含有質子與中子)構成。粒子加速器一般即為加速電子或質子。有興趣的讀者可參考阿宅物理(3)
  • [6] 譯註:亦稱核磁共振。
  • [7] 譯註:X光,或稱X射線(X-ray),為波長在0.01奈米至10奈米間的電磁輻射。關於其發現,可參考科學史上的今天
  • [8] 譯註:天然的藍色黃玉相當稀少。上述轉換寶石顏色的過程稱為gemstone irradiation。
  • [9] 譯註:化學名詞。相關資訊可參考維基百科
  • [10] 譯註:常用在包裝上的透明塑膠膜,遇熱會收縮,可達成緊密包裝的效果。
-----廣告,請繼續往下閱讀-----
文章難易度
科學大抖宅_96
36 篇文章 ・ 1974 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
1

文字

分享

1
8
1
希格斯玻色子之後,持續運作的大強子對撞機又做了什麼?
科技大觀園_96
・2021/11/01 ・2735字 ・閱讀時間約 5 分鐘

大強子對撞機(Large Hadron Collider, LHC)隸屬於歐洲核子研究組織(European Organization for Nuclear Research, CERN),是一座巨大的粒子加速器,它包括一個位於地底、周長 27 公里的粒子加速環,就像粒子的跑道一樣。質子或是重離子在超導磁鐵的引導下,在跑道上急速奔跑然後對撞,物理學家就從這些對撞事件中,尋找新的粒子,探究未知的物理。

粒子發現年表。2012 年,科學家在大強子對撞機的對撞事件中,找到希格斯粒子。圖/何庭劭繪

LHC 在 2012 年就撞出了眾所期待的希格斯粒子,當時的物理界一片歡欣雷動,而最早預測希格斯粒子存在的希格斯本人以及同年提出理論的恩格勒,也在隔年獲得諾貝爾物理獎。LHC 很快就把主線任務解完了,那然後呢? 8 年過去了,LHC 並沒有因為主線任務解完就退休,這些年來,它仍然努力的製造一次又一次的對撞事件,畢竟科學家預期在 LHC 的撞擊能量尺度,應該還可以看到一些新東西,然而實際情況是如何呢? 

發現希格斯粒子的關鍵事件:希格斯粒子衰變到雙光子。圖/陳凱風提供

偏偏不倒的危樓—標準模型

在 LHC 找到希格斯粒子之後,研究團隊於 2015 年底起,把 LHC 的對撞能量從原本的 7 TeV 或是 8 TeV(1 TeV=1012電子伏特)調高到 13 TeV,運作了 3 年,這段時期稱為 LHC 的 Run II。撞擊的能量愈高,就愈能撞出罕見的事件。更明確的說,LHC 能撞出的粒子質量上限,大約落在總撞擊能量的 1/6,(在粒子物理中,粒子質量通常以能量單位表示),比這個能量更重的粒子出現的機率太低,事件樣本也太少,因此要有更多觀察,就必須把對撞能量拉高,並且累積更多數據。

全世界的物理學家正在針對這 3 年的數據做分析,長期參與 LHC 實驗的臺大物理系教授陳凱風說:「雖然還沒有分析完,目前的確是存在一些不能被排除的意外訊號,但是統計上還不足以證實這些是新物理所造成的現象。」在尋找新粒子這個目標上,雖然研究成果豐碩,但是量測結果並沒有明顯超出標準模型的範疇。

-----廣告,請繼續往下閱讀-----
大強子對撞機近期 CMS 偵測器照片。圖/陳凱風提供

另一方面,研究團隊也希望根據新資料的分析,來修正標準粒子模型裡的參數,但目前測量出的結果,卻都和理論預測大致相符。「這是一種很詭異的感覺。」陳凱風形容。事實上,現有的標準粒子模型並不是很穩定,陳凱風說:「我們認為目前的理論架構一定有些毛病,但偏偏又找不出來。這就好像我們蓋了座危樓,但又找不出如何補強它,而地震來它還偏偏不會倒。大概就是這麼微妙的感覺!」

舉例來說,標準粒子模型包括了六種夸克:上夸克、下夸克、魅夸克、奇夸克、頂夸克、底夸克,以及六種輕子:電子、緲子、濤子,以及三種對應的微中子。而其中的頂夸克質量明顯比另外五個夸克大非常多,而微中子的質量小到無法直接測量,這在物理學家眼中,是不應該自然發生的;此外,標準模型也無法滿足這個幾乎只存在物質、絕大多數反物質都消失的宇宙。為了解決這個問題,物理學家也提出一些假設,例如,會不會其實還有更重的夸克與輕子、或是更多奇異的玻色子存在呢?「但從 LHC 的實驗結果,我們還沒有找到符合的訊號。」陳凱風說。

粒子物理標準模型的粒子成分。圖/Wikimedia commons

 「你當然也可以說,反正宇宙就是這樣運作,但我們覺得背後一定有某個機制導致這樣的結果,只是我們就是沒找到。」陳凱風並且以 100 多年前的元素週期表舉例,當初的週期表也是東缺西漏,但隨著一個個新元素的發現,這些缺口也漸漸被補滿。「而現在的標準粒子模型,就像是有著漏洞、明顯還沒完成的拼圖,卻又找不到東西來填補。」陳凱風說。 

臺大物理系教授陳凱風。圖/簡克志攝

Run III — LHC 改頭換面

儘管 LHC 的 Run II 呈現的結果意外的平靜,但 Run III 已經準備在明年啟動。

-----廣告,請繼續往下閱讀-----

在 Run III 階段,LHC 將把對撞能量再往上調高至 14 TeV以上,這是 LHC 當初設計的最大許可能量。另一方面,研究團隊將對 LHC 做許多技術上的修改測試。這是因為在 Run III 結束後,LHC 將進行一次大改造升級,要將每次參與對撞的粒子數量與密度提升,這樣一來,對撞事件發生的次數會跟著上升 5~10 倍。

為了因應這樣的升級,許多軟硬體、零件也必須跟著升級,其中最重要的一項就是偵測器。比如說目前 LHC 底下的 CMS 實驗所裝載的量能器,主要材料是以一種鉛鎢玻璃晶體為材料的閃爍體,而這些安裝在偵測器頂蓋處的晶體長期接受高輻射劑量,已經有了不少缺陷,變得愈來愈不透明了。陳凱風說:「試想如果升級之後,還用一樣的零件材料,那原本經過 10 年才會損壞的,現在只要 1 年就會接近無法運作了。」因此,偵測器必須跟著升級才行。

新的量能器(High Granularity Calorimeter, HGCAL)會以矽半導體材料為主,並且切分成 28 層排成一列,這樣做的好處除了較不易打壞外,每一層都能獨立送出粒子經過時的位置資料,可以更準確地描繪出粒子穿越偵測器的物理反應。目前由臺大物理系教授呂榮祥、裴思達主持的硬體實驗室,就正在研製這種新型量能器。再加上也會一同升級的各種裝備,未來可以對粒子的物理特性有更精準的量測。 

▲在臺大製作的次世代量能器模組(開發中),做為 LHC 底下 CMS 實驗的新型偵測器,影片中可以看到模組上膠的過程,本影片由臺大物理系呂榮祥教授提供。
▲在臺大製作的次世代量能器模組(開發中),為上述影片更進一步組裝的過程,本影片由臺大物理系呂榮祥教授提供。

LHC 有來自全世界 85 個國家、超過 8,000 位物理學家參與,可說是全世界最大的實驗計畫。但在加速器的發展上,LHC 可能還不是終點,未來計畫籌建的加速器計畫,還包括 CERN 的未來環形對撞機(FCC)、中國的環形正負電子對撞機(CEPC),以及日本的國際直線對撞機(ILC)等。

-----廣告,請繼續往下閱讀-----

雖然說這些計畫是否真的會有所進展,還要看未來的局勢發展,但我們不妨期待包括 LHC 在內的這些實驗計畫,會繼續帶給我們怎樣的驚喜!就如陳凱風在訪談快結束時所說:「希望我們下次討論的,是在對撞的數據中,我們發現了什麼有趣的新物理!」

-----廣告,請繼續往下閱讀-----
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
尋找小尺度粒子為什麼需要對撞機?跟核融合又有什麼關係?──《科學月刊》
科學月刊_96
・2019/10/18 ・2221字 ・閱讀時間約 4 分鐘 ・SR值 571 ・九年級

  • 文/章文箴,中研院物理所研究員。

物理的發展中,從過去於自然界中的觀測,到今日利用強大能量的對撞機,尋找尺度更小的粒子一直是物理學家的目標。但粒子到底是如何被製造的呢?本文將解開粒子對撞機製造新粒子的機制。

人類為了發現比原子更小的新粒子,早期大多藉由觀察來自於宇宙射線與大氣層作用後的產物,例如渺子、正電子等;而質量較大的粒子,由於它們容易衰變,生命期短,因此不易觀測。

人類為了發現比原子更小的新粒子,早期大多藉由觀察來自於宇宙射線與大氣層作用後的產物。圖/Pixabay

隨著加速器的發明和使用,後續大多利用加速器產生高能量的質子束或電子束。在碰撞的過程中,能量足夠的情況下,透過特定反應產生並觀察新粒子。

質量是基本粒子的特性,也是辨認它們最重要的實驗證據,利用加速器所產生撞擊事件產生新粒子,碰撞過程的質心系能量 (center of mass energy) 必須大於新粒子的質量,才能透過質能互換,產出生成全新粒子。

-----廣告,請繼續往下閱讀-----

因此,在找尋質量更大新粒子的過程中,加速器的能量必須不斷地提升,也由從撞擊固定靶的實驗,轉換成對撞機實驗,達到足夠的質心系能量。

J/Ψ粒子的發現

以 1974 年所發現的 J/Ψ 粒子為例,其質量大約 3 GeV∕c2,由魅夸克 (Charm quark) 和反魅夸克所構成,因為魅夸克的質量遠高於當時已知的上夸克 (up quark)、下夸克 (down quark) 及奇夸克 (strange quark),受限於加速器能量的提升,在搜尋上拖延了一段時間,甚至讓物理學家猜測是否夸克只有以上的三種。

後續由丁肇中先生所領導的團隊,利用當時美國紐約州布魯克黑文國家實驗室 (Brookhaven National Laboratory, BNL) 剛完成全世界最高能量的加速器──交變梯度同步加速器 (Alternating Gradient Synchrotron, AGS) ,將質子束加速到 30 GeV,與固定鈹靶撞擊,此撞擊質心系能量大約為 7.75 GeV,因此得以產生並觀測到質量大約 3.1 GeV∕c的 J/Ψ粒子。

而同一時間,美國加州 SLAC 國家加速器實驗室 (SLAC National Accelerator Laboratory),透過正負電子湮滅反應,由能量直接生成新粒子,找尋 2.6~8 GeV∕c區間的新粒子,也同樣在 3.1 GeV∕c處發現 J/Ψ 粒子。兩團隊在 1974 年 11 月同步宣布發現,確認第四種夸克的發現,這項科學重要里程碑,在兩年後獲得諾貝爾物理學獎的肯定。

-----廣告,請繼續往下閱讀-----

1974 獲得諾貝爾物理學獎的兩人,左為 Sir Martin Ryle,右為Antony Hewish。圖/The Nobel Prize

澄清聳動新聞報導中的兩個專有名詞

在最近國內一則新聞報導提及,有研究人員在重氫與重氫核融合的過程中,宣稱觀察到 W 中間子的生成,並可透過此過程取得穩定能量。

筆者認為在該報導中有兩點需要進一步被澄清:W中間子觀測核融合技術

W 中間子的觀測

核反應後原子核中不穩定的中子可透過弱交互作用力,轉換成質子成為穩定核結構,稱之為 β 衰變(下圖)。而 W 中間子正是弱交互作用力的交換粒子,但此處的 W 中間子在理論架構中只是一個虛粒子 (virtual particle),代表動態量子場中能量和動量的傳遞,該處的質量是變動的而非定值,因此 β 衰變的發生,並不能視為實際發現弱交互作用力中 W 中間子的證據。

-----廣告,請繼續往下閱讀-----

β 衰變示意圖:透過弱交互作用,中子衰變為質子,而 W 中間子為弱交互作用力的交換粒子,釋放出一個電子及一個反電子微中子。

科學界對於 W 中間子的發現與確認,是源於歐洲核子研究組織 (Organisation Européenne pour la Recherche Nucléaire, CERN) 實驗室於 1983 年,在 400 GeV 質子和 400 GeV 反質子對撞後,所產生質心系能量可高達 800 GeV 反應中,觀察到質量大約 80 GeV/c的W玻色子,該研究成果在 1984 年贏得諾貝爾物理學獎,從此 W 粒子的質量測定成為高能物理實驗的量測準確的檢驗方法之一。

人類一直在追尋的技術:核融合

關於核融合反應,事實上是與日常生活息息相關。

在太陽內部,每一秒有 60 億公噸的氫核透過連續核融合反應轉換成氦核,其中的質量虧損轉換成能量形式放出,提供地球上的生物與人類生活上不可或缺的光和熱。

-----廣告,請繼續往下閱讀-----

而太陽內部的核融合反應能夠發生,歸功太陽內部強大的重力場,讓原子核能克服核子間的庫倫斥力,彼此靠近到約 10-15 公尺的距離,讓短距離的核力得以作用。

太陽內部的質子—質子鏈反應:首先由兩個氫原子核融合為氘,一個質子釋放出一個正電子和一個微中子成為中子,氘再和另一個氫原子合成氦同位素氦-3,最後再與另一氦-3形成氦同位素氦-4。

人類為了尋求穩定能量的來源,人造的核融合反應已研究超過 60 年,但是在技術層次上仍面臨重大困難。

過去曾嘗試利用加速器或電漿加熱方式,試圖克服核子間的庫倫斥力,以產生核融合反應,但是整個過程中所投入的能量,卻大於核融合反應後所釋放出的能量,無法達到能量的損益平衡,毫無商業運轉的價值。

-----廣告,請繼續往下閱讀-----

目前位於法國的國際熱核融合實驗反應爐 (International Thermonuclear Experimental Reactor, ITER) 計畫正集合來自全球各地 35 國之力,期望能在 2035 年底前突破此挑戰,讓人造核融合反應成為人類穩定能量的來源。

科學技術的源自於長期累積

科學和相關技術的進展需要長時間、大量人力與物力投入,透過嚴謹討論辯證、量化的測定、可重複的結果逐步累積,絕非一蹴可幾,也因此得以帶來對人類深遠的影響。

筆者期待藉此文提供讀者一些科學基本的知識得以用來判斷相關新聞報導的真假,更期盼臺灣社會大眾,能夠有正確眼光和態度,支持科學長期的發展,多充實科學基本知識,避免只感興趣於聳動性的新聞報導。


〈本文選自《科學月刊》2019 年 10 月號〉

-----廣告,請繼續往下閱讀-----

在這個資訊不被期待的時空裡,卻仍不忘科學事實至上的自由價值。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3956 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。