1974 獲得諾貝爾物理學獎的兩人,左為 Sir Martin Ryle,右為Antony Hewish。圖/The Nobel Prize
澄清聳動新聞報導中的兩個專有名詞
在最近國內一則新聞報導提及,有研究人員在重氫與重氫核融合的過程中,宣稱觀察到 W 中間子的生成,並可透過此過程取得穩定能量。
-----廣告,請繼續往下閱讀-----
筆者認為在該報導中有兩點需要進一步被澄清:W中間子觀測與核融合技術。
W 中間子的觀測
核反應後原子核中不穩定的中子可透過弱交互作用力,轉換成質子成為穩定核結構,稱之為 β 衰變(下圖)。而 W 中間子正是弱交互作用力的交換粒子,但此處的 W 中間子在理論架構中只是一個虛粒子 (virtual particle),代表動態量子場中能量和動量的傳遞,該處的質量是變動的而非定值,因此 β 衰變的發生,並不能視為實際發現弱交互作用力中 W 中間子的證據。
β 衰變示意圖:透過弱交互作用,中子衰變為質子,而 W 中間子為弱交互作用力的交換粒子,釋放出一個電子及一個反電子微中子。
科學界對於 W 中間子的發現與確認,是源於歐洲核子研究組織 (Organisation Européenne pour la Recherche Nucléaire, CERN) 實驗室於 1983 年,在 400 GeV 質子和 400 GeV 反質子對撞後,所產生質心系能量可高達 800 GeV 反應中,觀察到質量大約 80 GeV/c2 的W玻色子,該研究成果在 1984 年贏得諾貝爾物理學獎,從此 W 粒子的質量測定成為高能物理實驗的量測準確的檢驗方法之一。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。