0

1
1

文字

分享

0
1
1

日本獲得命名權的113號元素,是怎麼誕生的呢?

艾粒安鈉
・2016/01/30 ・3762字 ・閱讀時間約 7 分鐘 ・SR值 567 ・九年級

元素週期表再添新成員!在2016年元旦前夕,113號元素ununtrium,Uut)的發現獲得了官方認可,進入了元素週期表的大家族。由於113號元素非常不穩定、放射性極高,科學家花了十多年的心血,終於能製造這難以捉摸的元素,並重覆實驗結果,讓113號元素得以驗明正身!

核物理學家提出的「穩定島」(island of stability)假說,認為120、126號元素附近的元素原子核能夠長時間穩定存在;113號元素的發現,讓通往穩定島之橋逐漸成形,到底這號元素有何特別之處,背後又有什麼歷史呢?

element 113

發現還是發明?113號元素的早期研究

像113號元素這類的超重元素,由於壽命極短、稍縱即逝,而且形成條件極為嚴苛,在地球上並不自然存在,因此科學家與其說是發現超重元素,不如說是「發明」元素呢!實際方法是使用粒子加速器將兩個較輕的原子核相撞,發生核反應而融合成較重的原子核。

2003年八月,俄羅斯的杜布納聯合核研究所(JINR)與美國加州勞倫斯利福摩爾國家實驗室(LLNL)的合作計畫中,科學家利用鈣原子核(含20個質子)和鋂原子核(含95個質子)相撞,融合成115號元素原子核,此原子核再進行α衰變,放出含2個質子的氦原子核後,產生了113號元素:

CaAmUup1
CaAmUup2

由於從115號元素開始這條衰變鏈中的所有原子核,都是以往沒有發現過的,要以化學方式辨認這些元素的放射性衰變產物,才能證明當初的確產生了115號以及113號元素。理論上113號元素再經過四次α衰變之後,會產生屬於第五族元素的?(「金杜」,dubnium,Db),科學家也宣稱化學方法證明產生的?元素符合第五族元素性質。然而,2011年,國際純粹與應用化學聯合會(IUPAC)和國際純物理與應用物理聯合會(IUPAP)聯合小組認為,第四族元素與第五族元素的化學性質非常相似,無法以足夠的可信度區別,因此駁回了美俄聯合研究小組對113號元素的發現。

為何是日本團隊命名?日本理研再度發現

日本理化學研究所(簡稱理研,RIKEN)的仁科加速器研究所在1980年代開始發展粒子加速器的技術,並成功研發出世界最高粒子束密度的「理研重離子直線加速器」(RILAC,RIKEN Heavy-ion LINAC)。加上氣體充填型反跳分離器(GARIS,Gas-filled Recoil Ion Separator)的輔助,可以高效率分離並收集核反應的產物,超重元素的合成在2001年正式展開!

直線粒子加速器示意圖
直線加速器示意圖,帶電粒子經由每根電極管(drift tube)之間施加的電場不斷加速。來源:Cyberphysics.co.uk

理研由森田浩介博士領軍的科學團隊,利用加速的鋅原子核束(含30個質子),不斷撞擊鉍元素(含83個質子)的靶體,並在2004/7/23首度偵測到一顆113號元素的原子核:

ZnBiUut

這顆原子核衰變的產物?原子核,先前曾由P. A. Wilk在2000年發現;但理研製造的這顆?原子核,發生了核分裂,Wilk製造的則進行了α衰變。2005年四月,理研製得了第二顆113元素原子核,可惜的是,這顆原子核的衰變數據跟第一顆不盡相同;因為?原子核很不乖,有三分之二的機率會發生核分裂,只有三分之一的機率會進行α衰變,產生確定的產物。加上缺乏有力的化學證據來確認衰變產物,因此以上的發現依然沒有受到承認,與杜布納研究所在2003年的發現一併被駁回。(崩潰啊!)

兩次實驗結果不一致怎麼辦呢?再做第三次啊!這也是沒辦法的事……然而命運之神的捉弄,讓森田博士又花了七年的光陰,才終於在2012/8/12製造出第三顆113號元素原子核!或許受到森田博士鍥而不捨的努力精神感召,這一顆113號元素按部就班連續進行六次α衰變,形成含101個質子的元素鍆(mendelevium,Md)。其中最後兩次的衰變與先前的研究結果相當一致,最終產物鍆的形成也相當明確。行蹤成謎的113號元素,終於驗明正身,並獲得IUPAC/IUPAP聯合小組的官方認可。發現113號元素的競爭,最後由日本理研的森田博士取得勝利!

Uutdecay

113號元素的命名

在113號元素的發現尚未證實之前,根據IUPAC對新元素的暫時命名規則,以來自拉丁文的un(一)- un(一)- tri(三)編號,再加上-ium(元素)字尾,稱為ununtrium(Uut),中文就照字面翻譯為113號元素囉!小編記得以往104至109號元素尚未取得正式命名時,坊間許多元素週期表把這六個元素的暫時名稱,譯成[金四]、[金五]、[金六]、[金七]、[釟]、[釚]六個中文字,才擠得進元素週期表的小小格子裡!如今這幾個元素已有正式的中英名稱。

而官方在核准113號元素進入週期表的同時,也授予日本理化學研究所對此元素的命名權。這也是亞洲國家首度獲得元素命名權的榮耀時刻!目前提議的名稱有「日本元素」(Japonium,Jp)、「理研元素」(Rikenium,Rk)、以及紀念日本物理之父仁科芳雄的「仁科元素」(Nishinanium,Ns)。113號元素最後究竟叫什麼名字,讓大家拭目以待吧!待英文正式名稱確定後,中文以每個元素由單音文字為命名原則,又將掀起國內科學單位的一波討論,但無論如何,以後大家就不必用又臭又長的「113號元素」來稱呼它了!

  • 2017/2 y編按:第113號元素已正式命名為“Nihonium” ,符號為 “Nh“ ,由日本的日文發音就是 “Nihon” 再加上元素常見的後綴詞 “ium” 。中國將其中文名訂為“缺字圖片”,台灣尚未公佈正式名稱。

為何超重元素這麼難合成?

以前有居禮夫婦從上噸的瀝青鈾礦萃取出鐳的壯舉,現代則有科學家不斷運轉粒子加速器合出寥寥幾顆超重元素原子核的成就,兩者的嘔心瀝血程度堪可比擬!為何超重元素這麼難合成呢?首先有個問題要釐清:原子核是由質子和中子組成的,中子不帶電、質子帶正電,正正不是相斥嗎?為何原子核不會自動散掉呢?原來,基本粒子之間除了電磁力之外,還有一種強核力strong nuclear force,又稱強交互作用,strong interaction),既然如此稱呼,表示這股力量相當強大,勝過了質子之間互相排斥的電磁力。

就是這種強核力,把原子核中的質子和中子緊緊束縛在一起。然而,強核力的作用距離非常短,當原子核變得越來越大顆,強核力逐漸不敵質子之間的電磁排斥力量,造成原子核不穩定,會自發性放出一些粒子(衰變),變成更輕更穩定的原子核。這也是為什麼包含鉍(bismuth,Bi)在內以及更重(原子核含有更多質子)的元素都具有放射性,原子核越重就越不穩定、越難以合成和捕捉,元素表最後幾號的超重元素更是稍縱即逝,以113號元素為例,壽命只有數千分之一秒!

兩個原子核若距離較長,受到電磁力互斥;但當原子核距離夠近,強作用力將原子核之間拉近而融合。來源:維基百科
兩個原子核若距離較長,因電磁力(粉紅外圈)互斥;只有原子核距離非常近,強作用力(綠色內圈)才能將原子核之間拉近而融合。來源:維基百科

合成超重元素的科學意義

放射性如此強烈、倏忽即逝、合成又難如登天的元素,當然完完全全沒有實用價值了,那麼科學家為何明知山有虎,偏向虎山行呢?文中第一段提到的「穩定島假說」,大概是支持這些努力不懈的科學家最大的動力了。核物理學家發現,質子、中子數量是偶數的原子核,比奇數的原子核更加穩定,這也是為什麼114號元素鈇(flerovium,Fl)和116號元素鉝(livermorium,Lv)都比113號元素提早入住元素週期表。

更有甚者,質子、中子數量若為一些特別的「魔數」(magic number),這樣的原子核的穩定性更是大大增加。根據公式,126也是魔數,所以126號元素很可能反轉原子核越重越不穩定的趨勢。儘管距離126號元素依然有一段距離,但隨著新超重元素的發現,科學家的視線也越來越明朗,可以藉由不斷累積的實驗數據,逐步修正這個早在1960年代就提出的穩定島假說。憑藉著一股科學家的浪漫,朝著穩定島的亞特蘭提斯大陸航行吧!

穩定島示意圖。來源:維基百科
穩定島示意圖。來源:維基百科

參考文獻

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!


數感宇宙探索課程,現正募資中!

文章難易度
艾粒安鈉
7 篇文章 ・ 1 位粉絲
主修有機合成。對化學、天文、幾何學、地理、氣候、統計學、語言學、心理學、社會學、音樂和烹飪都有興趣。不願一生為學術研究爆肝,而熱愛為感興趣的學科認真寫科普文章,並用創意比喻和爛梗讓大家喜歡科學。多元性別,最高心跳210,海豚音到重低音一手包辦。


0

24
5

文字

分享

0
24
5

泡藥的蝦仁蚵仔肥美飽滿?磷酸鹽為什麼這麼神奇?

安比西林_96
・2021/04/02 ・2876字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

每隔一段時間,就會在新聞上傳出有「黑心海鮮」如蝦仁、蚵仔添加了磷酸鹽「增肥」的新聞。為什麼磷酸鹽會有這樣的效果?

讓蝦仁等水產變得水噹噹的磷酸鹽到底有什麽問題?圖/轉自華視新聞

事實上,磷酸鹽除了屬於合法的「食品添加物」,可以在規定範圍內添加於肉製品及魚肉煉製品(像是貢丸、魚丸),它也是生物體中原本就常見並且不可或缺的化學物質,具有重要的生理功能。

磷酸鹽類在自然中很常見,存在於溪流、河川、海洋中。我們日常使用的肥料、洗碗精中,也多含有磷酸鹽。由於磷也是藻類重要的營養來源,因此要特別注意人類污水的排放,以免過量的磷酸鹽導致水體優養化(Eutrophication)。

當水中的磷酸鹽含量過高時,水體會發生優養化,藻類大量繁殖造成水質惡化。圖/wikimedia

讓酸鹼平衡、保護細胞的功臣——緩衝劑

細胞的生理反應,都需要在穩定酸鹼值環境下才能順利進行,而磷酸鹽在生物體中的最重要的功能,就與磷酸能夠平衡穩定「酸鹼」的性質,有很大的關聯。

歷史上,科學家為了搞清楚酸和鹼到底是什麽,做了不少努力。1884 年,阿瑞尼士(Arrhenius)提出在水溶液中解離出氫離子(H+)的是酸,解離出氫氧根離子(OH的則是鹼,這也是最為人所知的定義。

不過同樣是解離出氫離子與氫氧根離子,也是有分強弱的。解離效率很好的酸如硫酸、鹽酸,就是我們一般所說的強酸;而相對應解離氫氧根離子效率很好的鹼如氫氧化鈉、氫氧化鈣,就是強鹼了。和實驗室常見的强酸如鹽酸、硝酸不同,磷酸是可以解離出三個氫離子、形成三種不同酸根的三元弱酸

提出酸鹼質子理論的布倫斯惕(Brønsted,左)和勞里(Lowry,右)。圖/wikipedia

但布倫斯惕(Brønsted)和勞里(Lowry)認為阿瑞尼士的酸鹼定義還不夠,他們進一步擴充:凡是能給出質子H+)的物質都是酸,凡能接受質子H+)的物質都是鹼。在這「一個願給,一個願收」的關係中,反應物與產物被稱為「共軛酸鹼對」:反應物是酸的話,產物就是共軛鹼;反應物是鹼的話,產物即為共軛酸。(後來路易斯(Lewis)將酸鹼定義擴大至電子的給予和獲得角度,詳細可參閲 路易斯酸與鹼

所謂的緩衝溶液(buffer solution),就是由弱酸及其共軛鹼(或弱鹼及其共軛酸)所組成的緩衝對配製的。有打電動的人應該知道,「加 buff」就是用各種道具增强玩家的能力,「buff」英文原意為「增强」,加上 -er 變成「buffer」,即有引伸為「保護以抵禦傷害」的意思。因為緩衝溶液具有緩衝對,在加入酸或鹼時,都能跟對方反應進行酸鹼中和,可以減緩 pH 值改變,對細胞能在穩定酸鹼平衡下正常工作,可説是功不可沒。

磷酸為三元弱酸,其解離方程式與酸解離常數 (Acid dissociation constant, Ka) 如上。

而不管在酸性、中性、或是鹼性環境中,磷酸都能解離出維持酸鹼平衡的緩衝對。作為理想的緩衝劑,磷酸的緩衝對不止存在於血液中,磷酸鹽更被廣泛地利用在食品的添加物中。

磷酸鹽毒性低又多功能?切勿亂用!

磷酸鹽家族成員衆多,具有不同的形態包含正磷酸 (ortho)、焦磷酸(pyro)、三聚磷酸 (tripoly)、及多聚合磷酸 (poly/meta)。介於 pH 4(中等酸性)到 pH 12 強鹼性的各類磷酸鹽,以不同比例調配的話,就可以得到 pH 值穩定在 pH 4.5 ~ 11.7 之間的緩衝劑,可適用於大多數落於 pH 3.5 ~ 7.5 的食品中 。

食物如生鮮肉品在屠宰後,會因為細胞繼續進行無氧(anaerobic)代謝作用而累積乳酸(lactic acid),改變原本酸鹼值和脫水。而磷酸鹽緩衝劑的特性,可以調整食物的 pH 值,使食物能維持原本的色彩。除了作為 pH 調節劑和穩定劑,磷酸鹽也具有很好的保水作用。磷酸鹽也能和肉組織中的鈣鎂離子結合,讓其中的肌肉蛋白鬆弛,使水分可以被維持在組織中,增加肉的口感和顔色。同時和鈣鎂離子的結合,也能減慢氧化腐敗的作用。

加入磷酸鹽,對改善食物風味的特質有諸多好處,加上毒性低,因此成為被廣泛應用的食品添加劑。儘管磷酸鹽包辦了各種功能,是合法的食品添加物,但使用上仍有法規限制。根據《食品添加物使用範圍及限量暨規格標準》規定,水產方面只限用於貢丸和魚丸等加工食品,用在生鮮水產品如蚵仔或蝦仁可是違法的!

所以磷酸鹽可以用在蝦仁蚵仔上嗎?答案是:違法!圖/Pixabay

吃太多磷酸鹽也是母湯

磷酸鹽存在於日常所吃的各種食物中,已是不爭的事實,為什麽媒體報導和 line群組訊息中,總是大肆渲染食物中添加磷酸鹽的問題呢?

儘管磷酸鹽自然存在於生物體内,但如前面提到的,由於磷酸根會傾向與鈣離子結合,若攝入體内的磷酸鹽過量,便會影響人體鈣離子的吸收,造成骨質疏鬆、血管鈣化等健康問題。此外,過多的磷酸鹽,也會對腎臟造成很大的負擔,長久大量攝取,容易引起腎臟功能。

那麽,一個人正常合理的磷酸鹽攝取量又是多少呢?

除了加工肉品,其他食物如麵包、乳製品中也都常用磷酸鹽作爲食品添加物。圖/Pixabay

根據現行「食品添加物使用範圍及限量暨規格標準」,食品中磷酸鹽的用量不可超過 3g / kg 。目前歐盟訂定的每日容許攝取量(Acceptable daily intake, ADI),則是 40 mg / kg。對於一個體重 70 kg 的成年人而言,大約是每天 2.8 g 的磷。而「國人膳食營養素參考攝取量」的每日營養素建議攝取量中,13 至 18 歲的青少年建議每日攝取 1000 mg 的磷,成人則為 800 mg。假設一根 50 g 的市售香腸磷含量為 1.50 g/kg,那麽一個青少年一天大約吃 13 根香腸會超過建議攝取量。13 根香腸聽起來有點多,但天然食物中也含有磷,別忘了將其他食物也納入每日磷攝取量的考量中。

總而言之,對於食物中加入磷酸鹽一事,我們不必過度憂慮,只要注意日常攝取量不要超標即可。但在生鮮水產中加入磷酸鹽仍屬違法行為,作為消費者,看見水噹噹、肥美得過分的蝦仁蚵仔,還是需要小心警惕!

參考資料:

  1. 緩衝溶液
  2. 認識食物中的磷與磷酸鹽
  3. 磷酸鹽在食(肉)品加工中的應用
  4. 食品添加物使用範圍及限量暨規格標準
  5. EFSA issues new advice on phosphates
  6. 國人膳食營養素參考攝取量

數感宇宙探索課程,現正募資中!

安比西林_96
9 篇文章 ・ 7 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)