Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

烏鴉製作工具的畫面首次曝光

奇奇
・2016/01/05 ・1152字 ・閱讀時間約 2 分鐘 ・SR值 490 ・五年級

烏鴉使用工具早已不是新鮮事,但科學家這次拍到的烏鴉再次超越了人們過去對這些聰明鳥兒的想像。

來自英國艾斯特大學(University of Exeter)和聖安德魯斯大學(University of St Andrews)的 Christian Rutz及 Jolyon Troscianko兩位博士,在野生的烏鴉尾羽上安裝了經特別設計的監視攝影機,用以觀察牠們在野外環境的覓食行為,順利拍到了這些熱帶鴉科動物製造並運用這些複雜工具的影像!

New Caledonian crows make and use ‘hooked stick tools’ to hunt for insect prey. Credit: Image courtesy of University of Exeter
新喀里多尼亞烏鴉懂得製造並利用勾狀工具捕食昆蟲。.
Credit: Image courtesy of University of Exeter

在影像中的兩個例證可以看到:有隻烏鴉花了約莫一分鐘的時間用樹枝做出了鉤狀工具,並運用它找出躲在枝幹縫隙和藏在地面枯枝落葉當中的食物。這項研究已於2015年12月23日發表在英國皇家學會期刊的生物學快報。

Troscianko博士目前在艾斯特大學的生物科學系進行博士後研究,他表示:「觀測新喀里多尼亞烏鴉(Corvus moneduloides)是著名的困難挑戰,這不僅是因為牠們棲息的熱帶地區地形崎嶇複雜,這些烏鴉對於周遭環境變化也相當敏感。這次透過最新的科技,讓我們得以將牠們迷人的行為記錄下來,也讓我們了解到使用工具對於烏鴉日常的覓食行為是何等重要。」

-----廣告,請繼續往下閱讀-----

這些鳥兒的棲息地就在新喀里多尼亞這座南方島國,它位在大洋洲的西南部,約莫是在南迴歸線附近。

新喀里多尼亞烏鴉懂得利用鳥喙削除多餘的雜枝和樹葉,製作出合適的工具,用來挖出躲在縫隙中的甲蟲,某些人甚至認為牠們使用工具的能力足以媲美某些靈長類動物。

為了捕捉到這段難能可貴珍貴的畫面,兩位研究人員開發出了只有硬幣重量的攝影機,外加一個讓研究人員可以追蹤設備所在位置的小型無線電指標。在作為研究區域的這塊乾旱林區中,研究小組在19隻烏鴉身上設置了攝影機,經歷上百小時的野地調查,他們才得到了這寶貴的驚鴻「兩」瞥。

Troscianko指出:「在觀看影片時,我們差點就錯過了這項重大發現!第一次檢查影片時,我並沒有注意到任何有趣的地方,但我後來再次一幀一幀逐格觀看影片時,才發現了牠們這項驚人舉止。」

-----廣告,請繼續往下閱讀-----

「在另一段影像中,一隻烏鴉不小心弄掉了牠的工具,牠馬上把它撿了回來,彷彿深怕弄丟它,這顯示牠們是何等看重這些隨身的覓食法寶,絕對不是像拋棄式那樣用過即丟。」根據 Rutz的說法,這項觀察和他的研究團隊在人為飼養環境下的烏鴉身上進行的實驗結果一致。「烏鴉們對於遺失工具這件事可以用『痛恨』來形容,牠們會運用各種技巧和方式確保牠們的工具安然無恙。我們甚至觀察到牠們將自己的寶貝工具藏在樹洞中,就跟人們會把鑲上寶石的鋼筆放進收藏匣的道理一樣。」

原文:《Crows caught on camera fashioning special hook tools》Science Daily, 2015, 12,23.

研究發表:《Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras

 

-----廣告,請繼續往下閱讀-----
文章難易度
奇奇
9 篇文章 ・ 0 位粉絲
泛科學菜鳥編輯,從大眾傳播路上誤打誤撞走進科學世界,希望可以將科學迷人之處傳達給所有人!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
3

文字

分享

1
1
3
我們與猴子的差別是什麼?認知功能的複雜性——《千腦智能新理論》
星出版
・2023/06/27 ・1937字 ・閱讀時間約 4 分鐘

認知功能與新皮質

人類優越的認知功能,是我們與我們的靈長類親戚最大的差別。我們的視覺和聽覺能力與猴子相似,但只有人類會使用複雜的語言,製造複雜的工具如電腦,以及能夠探討演化、遺傳和民主之類的概念。

弗農・蒙卡索(Vernon Mountcastle)認為,新皮質中每一個皮質柱都執行相同的基本功能。果真如此,在某個基本層面上,語言和其他高階認知能力,與視覺、觸覺和聽覺能力是一樣的。這不是顯而易見的事,閱讀莎士比亞的著作與拿起一個咖啡杯看來並不相似,但根據蒙卡索的想法,兩者基本上是同一回事。

根據蒙卡索想法,對每個皮質柱來說,拿起一個杯子與閱讀兩者是一樣的事情。 圖/envato

蒙卡索知道皮質柱並不完全相同,例如從手指獲得輸入的皮質柱,與理解語言的皮質柱有物質上的差異,但兩者相似之處多過差異。蒙卡索因此推斷,一定有某種基本功能支撐新皮質所做的一切——並非僅限於感知,還包括我們視為屬於智能的所有能力。

視覺、觸覺、語言、哲學之類的不同能力本質上相同,這樣的想法是許多人難以接受的。至於這背後的共同功能是什麼,蒙卡索沒有提出他的想法,而答案實際上也很難想像,人們因此很容易忽視他的理論或直接否定。

-----廣告,請繼續往下閱讀-----

例如語言學家就經常把語言說成與所有其他認知能力不同;如果他們接受蒙卡索的想法,他們可能會尋找語言與視覺能力的共同點,以便更好地認識語言。對我來說,蒙卡索的想法令人興奮到不容忽視,而我發現,實證證據壓倒性地支持這個想法。

我們因此面對一道引人入勝的謎題:什麼樣的功能或演算法,可以創造出人類智能的所有方面?

我們如何處理對抽象事物的認知?

到這裡為止,我陳述了一個理論,說明皮質柱如何習得實物——例如咖啡杯、椅子、智慧型手機——的模型。這個理論說,皮質柱為每一個觀察到的物體創建參考框架。如前所述,參考框架就像一個無形的三維網格,圍繞著一個物體並附在它上面。參考框架使皮質柱得以習得物體各個特徵的位置,這些特徵界定了物體的形狀。

較抽象而言,我們可以視參考框架為組織任何類型的知識的一種方式。咖啡杯的參考框架對應一件我們看得見、摸得到的實物,但參考框架也可以用來組織關於我們無法直接感知的事物的知識。

-----廣告,請繼續往下閱讀-----

想想那些你知道但不曾直接感知的事物,例如你如果學過遺傳學,會知道 DNA 分子是怎樣的。你可以想像它們的雙螺旋形狀,你知道它們如何利用核苷酸的 ATCG 鹼基為氨基酸序列編碼,你知道 DNA 分子如何解旋複製。

當然,從來沒有人曾直接看到或觸摸過 DNA 分子,我們做不到,因為它們太小了。為了組織我們關於 DNA 分子的知識,我們製作圖片,就像我們可以看到那樣,也製作模型,就像我們可以觸摸那樣。我們因此得以利用參考框架儲存關於 DNA 分子的知識,就像我們利用參考框架儲存關於咖啡杯的知識那樣。

雖然看不到 DNA ,但我們可以利用模型來幫助大腦建立相關知識的參考框架。 圖/GIPHY

概念知識的認知,同樣使用參考框架

我們利用這種方式處理我們知道的許多東西,例如我們對光子有很多認識,對銀河系也有很多認識。我們同樣把這些事物想成彷彿看得見、摸得到的東西,因此可以利用我們用在日常實物上的那種參考框架機制,組織我們所知道的關於這些事物的事實。

人類的知識也延伸到無法視覺化的事物上,例如關於民主、人權、數學等概念的知識。我們知道關於這些概念的許多事實,但無法利用類似三維物體的東西組織這些事實——你無法輕易想出一個圖像來代表民主這個概念。

-----廣告,請繼續往下閱讀-----

概念知識必須有某種形式的組織,民主和數學之類的概念並非只是一堆事實,我們可以加以思考並作出推論,預測我們採取某種行動時將發生什麼事。我們做這種事的能力告訴我們,概念知識必須也是儲存在參考框架中,但這些參考框架可能不容易等同於我們用在咖啡杯和其他實物上的參考框架。

例如,對某些概念最有用的參考框架可能有三個以上的維度,我們無法將超過三個維度的空間視覺化,但站在數學的角度,它們的原理與三維或較少維度的空間相同。

——本文摘自《千腦智能新理論》,2023 年 5 月,星出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1

0

1
2

文字

分享

0
1
2
為什麼烏鴉會攻擊人?從叫聲來判斷那隻烏鴉是不是在「罵」你!——《烏鴉的教科書》
貓頭鷹出版社_96
・2023/02/15 ・2028字 ・閱讀時間約 4 分鐘

只要說到烏鴉,好像就會有非常強烈的「可怕」、「會攻擊人」的印象。但是「明明就沒做什麼,卻突然攻擊」的例子其實極為罕見。真的伴隨著身體接觸的「攻擊」也是不常見的。因為這類的攻擊而受傷的事情也很少聽說。反而是因慌亂而摔倒才比較危險。

烏鴉想要保護雛鳥

首先,烏鴉對人類採取敵對態度的,只有在保護雛鳥的時期而已。這一點請千萬不要忘記。雖然牠們若是在覓食的時候被打擾的話,可能會發出不開心的叫聲,不過並不會展開攻擊。從烏鴉的眼中看來,人類是既大又可怕的。

烏鴉對於望向巢或看雛鳥的視線非常敏感。由於在野生動物的世界中,並沒有像賞鳥者或是研究者般的奇怪傢伙,所以只要緊盯著巢一直看的,通常都是「想要對巢下手的敵人」。何況是盯著離巢幼鳥看,或是接近離巢幼鳥的話,就確實會認定成「我的孩子有危險了」。

烏鴉為了保護雛鳥,可能會攻擊人類。圖/elementsenvato

被烏鴉「攻擊」的例子中最多的,是當離巢幼鳥站在低矮樹枝或是地面上的時候。剛離巢的幼鳥雖然會拍動翅膀但是卻不能飛(只能說是往下掉的時間花得比較久,卻沒辦法到比原先位置要高的地方去),所以在動來動去的時候,位置就會逐漸降低。

-----廣告,請繼續往下閱讀-----

假如是在森林中的話,半路上會有許多樹枝,總是能夠抓住某處停在比較高的地方;但是假如是在像行道樹那樣孤立的樹的話就停不住,多半會掉到地面上來。這樣一來,親鳥就會為了要保護幼鳥而留在附近,對接近過來的對方一一加以威嚇,發出警告「不要靠近我的小孩」。

在澀谷實際發生過的一個悲劇,是烏鴉在天橋旁邊的行道樹上築巢,巢的高度跟天橋的高度剛好差不多。雖然行經天橋的行人完全沒有注意到巢的存在,但是對烏鴉來說,似乎就變成「好多人特地爬上樓梯來看我的小孩」。

在天橋上築巢的烏鴉,把行人當成攻擊對象。圖/elementsenvato

光是經過也還算了,但是有人完全基於偶然而以巢為背景來拍紀念照片,讓烏鴉氣瘋了,所以不只那個拍照的人而已,有好幾分鐘,烏鴉都對著經過的行人進行威嚇。那應該是「我已經受不了了,不管是你還是他,統統給我滾出去!」的狀態了吧。

因為如此,會發生烏鴉攻擊人類事件的時機,是在幼鳥離巢的季節,也就是集中在五月到六月之間。受害報告的統計也是如此。  

-----廣告,請繼續往下閱讀-----

話說回來,烏鴉在威嚇、攻擊時的順序究竟是怎樣的呢?假如知道的話,應該就不再會認為烏鴉是「突然」攻擊過來了吧。

烏鴉生氣時叫聲的變化

首先,烏鴉會先以聲音進行威嚇。可能會有人認為牠們平時就在KaAKaA 叫個不停,應該無法區別;不過牠們要是平時的叫聲是「KaA、KaA」的話,在這時候的叫聲就會變成很激烈的「KaAKaAKaAKaA !」。是不停反覆的快速連續叫聲,而且每一聲的音量都很大。只不過在這個階段時還不需要害怕。那不是對你叫,通常是在對經過那附近的別隻烏鴉叫。

「KaAKaAKaA」脾氣正常的烏鴉叫聲。圖/《烏鴉的教科書》。
「KaAKaAKaAKaA KaAKaAKaAKaA」對其他烏鴉生氣的叫聲。圖/《烏鴉的教科書》。

  

但是假如烏鴉很明顯的是朝著自己的方向叫、跟在後面過來、到低的地方來的話,就表示你被烏鴉盯上了,也就是「那裡的那個人,就是你啦」的被指名狀態。假如牠的叫聲是沙啞的「GaRaRaRaRa……」,就表示牠相當生氣。有時還會聽到像「KoRa ∼!」般的叫聲(附帶一提的是,白頰山雀的威嚇聲聽起來是「AcChi ∼ IKe」,也就是感覺起來好像在說「A-Chi-I-Ke」)。

「GaRaRaRaRa……」烏鴉在對你生氣(指名狀態)的叫聲。圖/《烏鴉的教科書》。
「KoRa~!」烏鴉爆氣中的叫聲。圖/《烏鴉的教科書》。

當叫了半天也沒有效的時候,烏鴉會開始用喙部敲擊牠停棲的樹枝。以人類來打比方的話,就像是在抖腳抖個不停,或是很神經質的用指頭敲打桌子的那種感覺。有時候還會把那附近的樹枝或葉子給撕扯下來。

-----廣告,請繼續往下閱讀-----

翻譯牠的意思,就會是「老子已經叫你滾開了,你還沒聽見嗎,白癡」。此外,牠把小樹枝撕扯下來的行為有時會被媒體寫成是對準人類「爆炸攻擊」,不過牠們真的只是由於很不高興的在亂丟,即使有打到人也純粹只是偶然而已。

——本文摘自《都市裡的動物行為學:烏鴉的教科書》,2023 年 1 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。