Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

傻傻分不清的黑鳥?-《烏鴉的教科書》

PanSci_96
・2015/12/02 ・2198字 ・閱讀時間約 4 分鐘 ・SR值 465 ・五年級

我曾經在大學裡的鳥類相關講座當過兼任講師。在那種時候,我通常會為了了解狀況而問學生:「你們知道哪些鳥類?」雖然他們並不會像小學生一樣舉手回答,不過只要我列舉出像是「麻雀?燕子?烏鴉?鴿子?」般的鳥名時,他們就會「嗯嗯」的點頭回應。啊啊,真是老實啊,就這樣直接掉進我的陷阱裡。於是我會邊露出獰笑邊這樣說下去。「對,差不多就是這樣。話說回來,沒有名叫烏鴉的鳥。也沒有稱為鴿子的鳥。」

當然這只不過是文字遊戲。但是在生物學上並沒有「烏鴉」這個物種,全都是像些「短嘴鴉(Corvus brachyrhynchos)」、「細嘴烏鴉(Corvus enca)」、「非洲白頸鴉(Corvus albus)」等的「○○鴉」。這是跟「燕子」、「麻雀」最大的不同。因為在日本的燕子是指Hirundo rustica(家燕)這個物種,麻雀則是指Passer montanus 這個物種的標準和名[1]。比較麻煩的是「燕子」有時是指燕科的所有鳥類,有時卻是指「雖然是燕科,卻不知道是哪個種」,於是賞鳥者會說「不是金腰燕也不是灰沙燕,而是家燕」。不過在日文中為了要分清楚,還會稱家燕為「普通燕子」。否則就會發生還在討論「啊,燕子!」「什麼燕子?」「不是,就是燕子啊。欸,不是金腰,就是普通的那種名字前面什麼別的描述也沒有的燕子」時,鳥已經飛到不知道哪裡去了的狀況。

烏鴉,PanSci

以烏鴉來說,並沒有「普通烏鴉」這種鳥。萬一不小心在烏鴉研究者前面脫口說出「啊,烏鴉!」的話,一定會被追問:「什麼烏鴉?粗的(巨嘴)?細的(小嘴)?」沒錯,在附近出沒的烏鴉,其實不只一種。雖然沒有一個名為烏鴉的物種,不過烏鴉的同類卻出乎意料的多。從分類上來看,在鳥類的雀形目鴉科鴉屬中,有四十種左右是「長得一副烏鴉樣」的烏鴉。雀形目?牠們跟麻雀是親戚?你可能會感到疑惑,但是全世界一萬種左右的鳥類當中有六千多種是屬於雀形目,所以不用太在意這件事情。看到鳥只要說牠是雀形目,答對的機率可是在二分之一以上呢。

鴉屬以外的鴉科鳥類有七十多種。含在這裡面的鳥類有松鴉、喜鵲、紅嘴藍鵲等。台灣國鳥台灣藍鵲[2](全身為鈷藍色,喙部跟腳是紅色)、在關東常見的灰喜鵲、分布於高山帶的星鴉也都包含在這之中。鴉科鳥類除了南極與紐西蘭以外,全世界都有分布(聽說紐西蘭不知道為什麼有禿鼻鴉,不過那應該是歐洲人帶進去的)。只不過在南美洲雖然有絨冠藍鴉(Cyanocorax chrysops)或是白喉鵲鴉(Calocitta formosa),但是鴉科的形象略顯淡薄。

-----廣告,請繼續往下閱讀-----

在鴉屬中一眼就看得出來是烏鴉親戚的鳥類,在南美洲是完全沒有的。在南美占據烏鴉棲位[3]的是黑美洲鷲(Coragyps atratus)或紅頭美洲鷲(Cathartes aura)。我聽在祕魯研究考古學的同事說,這些鳥在那邊郊外的垃圾場很常見,似乎被稱為Gajinaso(山裡的雞)等等。雖然並不清楚沒有烏鴉的理由,但是可以亂猜可能是當牠們從鴉類的故鄉大洋洲分散出來抵達南美的時候,已經沒有烏鴉的容身之處了(但這也無法說明紐西蘭為什麼沒有烏鴉)。除此以外的場所,不管是維也納的宮殿、凡爾賽宮的庭園、孟買的街道上、喜馬拉雅的山中、非洲的乾草原、洛磯山脈、猶他州沙漠的漢堡店後面、緬因州的森林、菲律賓或馬來西亞的叢林、澳洲的大平原、京都和東京,全部都是烏鴉的住處。

烏鴉,PanSci

話說回來,在全世界約有四十種的鴉屬之中,在日本被記錄到的為七種。這裡面最為普通常見的是巨嘴鴉和小嘴烏鴉。由於這兩種是全年都可以在日本看見,也在附近繁殖的,所以在日本只要說到烏鴉,就一定是這兩種之一。前面寫到的「粗的?細的?」也就是指「巨」嘴鴉或是「小」嘴烏鴉。嘴就是喙部,巨嘴鴉的喙部很粗呈弧狀,小嘴烏鴉的喙部稍細又直。此外,小嘴烏鴉在沖繩原本是冬候鳥,但是近年來好像愈來愈少見了。

另外還有冬候鳥的禿鼻鴉,時節一到就可以在全國的農耕地看見。禿鼻鴉的體型比小嘴烏鴉稍小,成鳥的喙部基部是白色的。年輕個體跟小嘴烏鴉很難區分,經常成群活動,通常都是在田地或農地裡用細長的喙部勤奮的啄著什麼。有時還會發出「喀啦啦啦」的叫聲一同飛起,在電線上面停成一排。牠們是鄉村派,不會到街上來。

假如在禿鼻鴉群中,有體型很小很可愛的個體混雜,那就是東方寒鴉。牠們的喙部短,體型也比較圓。叫聲也是「Kyu」、「Kyun」般的跟灰椋鳥一樣。禿鼻鴉的色彩多型,有全黑的黑色型,也有黑白的淡色型。淡色型像大貓熊一樣,格外可愛。再說到渡鴉。牠們是非常稀有的冬候鳥,在日本基本上只有北海道道東地區的知床能夠看到牠們,數量又非常少。雖然近年來好像有增加,但據說整個北海道也只有一百隻左右。

-----廣告,請繼續往下閱讀-----

[1]審訂注:生物的日文俗名(和名わめい)中,容易有同物多名的現象,為了避免混淆,日本的學界訂定了標準化的日文俗名,稱為「標準和名」,以便與學名能夠一對一對應。
[2]譯注:台灣藍鵲是台北市市鳥、雲林縣縣鳥。國鳥是於二○○七年由高雄縣觀鳥學會舉辦的投票活動選出,並非全面性被認同的。
[3]審訂注:棲位(niche),生態棲位(ecological niche)的簡稱,指最適合某生物生存並發揮其生態地位的環境抽象空間。這樣的空間受到許多因素的限制,包含溫度、雨量、棲地類型、食物來源等。不同物種的生物棲位不會完全相同。

烏鴉,PanSci本文摘自《都市裡的動物行為學:烏鴉的教科書》,由貓頭鷹出版。

延伸閱讀:

都市鳥類的行為可能造成物種分化

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
不為人知的鳥秘密?全都藏在羽毛裡——《五感之外的世界》
臉譜出版_96
・2023/09/19 ・2471字 ・閱讀時間約 5 分鐘

比孔雀還要顯眼、高調的鳥類並不多,但如果可以的話,我想請各位先忽略牠那華麗又色彩斑斕的尾羽。我們要將關注焦點放在孔雀頭上形成冠羽的那些硬挺羽毛。

細節藏在羽毛的「振盪頻率」裡

這些長得像鍋鏟的羽毛雖然也很醒目,卻常常被忽略。蘇珊.阿瑪德.康恩(Suzanne Amador Kane)從專門繁殖鳥類的鳥舍與飼養員那裡找來了一些孔雀,再加上一隻來自動物園、曾經不小心飛進北極熊圍欄裡的倒霉孔雀,想要研究孔雀冠羽的用途。

她的學生丹尼爾.凡.貝爾倫(Daniel Van Beveren)在孔雀冠羽上裝設了機械振盪器,並且觀察冠羽的擺動。當機器的振盪頻率為二十六赫茲時──也就是一秒振盪二十六次──冠羽擺動得特別劇烈。這是會令孔雀冠羽產生共鳴的頻率,也正好是雄孔雀求偶時擺動尾羽的頻率,因此康恩對我說:「這不可能只是巧合。」

孔雀冠羽產生共鳴的頻率,正好是雄孔雀求偶時擺動尾羽的頻率。圖/pexels

凡.貝爾倫對著架設好儀器的孔雀冠羽播放各種錄音,假如播出的是真正的孔雀搖動尾羽的聲音,冠羽就會產生共鳴;若是播放其他聲音,例如 Bee Gees 的〈Staying Alive〉,就沒有這種效果。

-----廣告,請繼續往下閱讀-----

該研究結果顯示,站在求偶的雄孔雀面前的雌孔雀或許真的能夠感知到雄孔雀尾羽製造出的氣流。除了看見雄孔雀賣力的求偶動作以外,雌孔雀或許也能感覺到這一番努力。(這種現象也會反過來,有時候雌孔雀也會對雄孔雀展現自己。)

康恩想要拍攝真實的孔雀求偶時冠羽的模樣,觀察牠們擺動冠羽的頻率是否真和尾羽相同,藉此證明她的論點。假如真是如此,就表示孔雀求偶的過程中除了有浮誇的視覺效果以外,其實還存在著人類一直以來都沒注意到的元素;而我們會忽略這些細節,是因為缺少適當的配備。

假如連大自然中如此耀眼浮誇的行為展演中,都有被我們忽視的環節,我們到底還錯失了多少東西?

孔雀細小的纖羽會告訴我們答案

從孔雀冠羽底部細小的纖羽(filoplume)就能找出線索。纖羽的樣子就像一根尖端為簇狀的茅,還能做為機械性受體之用。

-----廣告,請繼續往下閱讀-----

當空氣流動擾動了冠羽,便會擠壓到纖羽,進而觸發神經。大部分的鳥類都有纖羽,而且幾乎都會伴隨其他羽毛一起發揮作用。

鳥類可以透過纖羽掌控羽毛的狀態,因此或許能夠在鳥羽澎亂時即時整理羽毛,重整態勢。不過纖羽還有一項最重要的功用──幫助鳥類飛行。

從孔雀冠羽底部細小的纖羽就能找出線索。圖/pexels

避免失速墜落技巧

鳥飛行的樣子看起來是如此地輕鬆自在,因此我們很可能根本想不到那是一件多費力的事。為了維持在空中飛行,鳥必須一直調整翅膀的型態與角度。如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。

然而如果鳥的翅膀角度太大,原本順暢的氣流會形成擾流,抬升的力量也就隨之消失,這種現象叫做失速(stalling)。一旦鳥無法避免這種狀態產生或即時修正,就會從天上掉下來。不過這不常發生,一部分原因是因為纖羽能為鳥類提供必要資訊,因此能夠因應各種情況快速調整翅膀的狀態,避免不幸。

-----廣告,請繼續往下閱讀-----

老實說,這種能力實在相當驚人。我記得有次站在船上看著一隻海鷗緊跟船身飛行;那天風很大,而我們──也就是我坐的船和那隻海鷗──都在高速移動。當我伸出手感受從手上與指間吹過的風時,不禁讚嘆海鷗的翅膀竟然也能產生同樣的作用,讓鳥類能夠在天空中飛翔。

如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。圖/pexels

然而我當時我根本不知道鳥類還會運用纖羽判讀氣流,在飛行時不斷微調姿態。法國的眼科醫師安德烈.羅尚-杜維尼奧(André Rochon-Duvigneaud)曾描述鳥是「一對靠雙眼引導方向的翅膀」,不過這個說法還不夠正確──鳥的翅膀其實會為自己找到方向。

蝙蝠翅膀長得不一樣,功能卻一點都不差

蝙蝠的翅膀也是如此。牠們翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。蝙蝠的翅膀薄膜上布滿有敏銳觸覺的毛髮,這些毛髮從小小的半圓球狀上凸出,並且連接著機械性受體。

蘇珊.斯德賓發現這些毛髮大多數只會對來自蝙蝠背後往前吹拂的氣流有反應,而這種現象通常在蝙蝠快要失速時才會出現。因此蝙蝠其實就跟鳥類一樣,都能感覺出快要失速的狀態,也能夠及時採取行動修正。

-----廣告,請繼續往下閱讀-----

多虧這些毛髮,蝙蝠能以陡峭的角度飛行、在空中盤旋和後空翻,捕捉在尾巴附近的昆蟲,甚至還能以頭下腳上的姿態降落。當斯德賓以除毛膏去除蝙蝠翅膀上的毛髮,並讓牠們飛過障礙物後,可以發現毛髮消失對牠們產生的影響非常明顯。

蝙蝠翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。圖/pexels

牠們雖然不會墜落,卻會選擇與周邊的物體保持相當的距離,轉彎的角度也比平常更大,姿態更笨拙;反之,假如牠們翅膀上的毛髮完好無缺,就能夠以離物體僅僅幾公分的姿態飛行,還能做出過髮夾彎一般的飛行動作。

對牠們來說,氣流感受器的存在與否決定了牠們只能用一般方式飛行,還是能夠進一步做出各種飛行特技。

對於其他動物來說,這些感受器的存在很可能更是存亡與否的關鍵。這或許就是為什麼它們會演變為這世上數一數二敏感的器官。

-----廣告,請繼續往下閱讀-----

——本文摘自《五感之外的世界:認識動物神奇的感知系統,探見人類感官無法觸及的大自然》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。