中節為基因組(基因體)的特化區域,在顯微鏡下可認出那是 X 型染色體當中的主縊痕(primary constriction)。在細胞分裂期間附著到中節的細胞骨架(cell skeleton,即 cytoskeleton),使染色體分散至二個子代細胞。在絕大多數生物體中,中節的位置並非由 DNA 序列所決定。來自(德國) Freiburg,Max Planck 免疫生物學與外遺傳學研究所的科學家已成功證明,中節的位置、功能以及遺傳是由組織蛋白(histone) CenH3 所決定,那是一種包裹 DNA 的蛋白質。這項發現或有助於人工人類染色體更進一步的發展,那在醫療中可用於基因治療。
中節為一種蛋白質複合體,為著絲點(kinetochore,動粒),提供了一個發展平台。在細胞分裂期間,著絲點為細胞骨架提供一個附著點並使染色體朝細胞相對的二極移動。在絕大多數生物體中,中節的位址並非由 DNA 建構基石的順序(即 DNA 序列)所決定,而是外遺傳。此規則的唯一例外是單細胞真菌 — 麵包酵母菌(baker’s yeast),在其中有段特殊的 DNA 序列為中節位置的「編碼」。
至於這種外遺傳中節標記,最有希望的候選者是 H3 組織蛋白的一種變種,稱為 CenH3。組織蛋白與 DNA 的結合,大部分獨立於其下的序列且幫助包裹長絲狀的 DNA 分子。在各種生物體中,CenH3 只出現在中節所在的 DNA 區域。Max Planck 免疫生物學與外遺傳學研究所的 Patrick Heun 研究小組以及來自慕尼黑 Helmholtz 研究中心的同僚,現在發現僅 CenH3 就足以觸發中節形成。
為了他們的實驗,研究者使 CenH3 組織蛋白裝配一個以人工方式附加的 DNA 結合域,使該蛋白能與一處通常不會形成中節的 DNA 區域結合。現在,一個起作用的著絲點在這裡出現,且在細胞分裂期間與細胞骨架互動。利用這種方法,研究者在細胞分裂期間,成功使人造迷你染色體在二個子代細胞間散佈。此蛋白能獨立招募額外的 CenH3 蛋白。”這確保每次細胞分裂後,中節那邊有足夠的 CenH3。否則,可用的 CenH3 蛋白數量將在每次細胞分裂後減半。透過這種方式,中節的位置可以被一代傳一代,” Heun 說。
-----廣告,請繼續往下閱讀-----
從「麵包酵母中認 DNA 的中節(其位置無法改變)」跨越到「由蛋白質所定義的中節位置(其改變較易)」,也許在演化中扮演某種角色。儘管中節的大小多達數百萬個 DNA 建構基石,它仍可「跳躍」至其他位置而不會導致 DNA 移動。因此,在罕見例子中,即使中節已出現在一種密切相關的猿類物種中,一個新的中節仍可出現。所以,新中節也許對於新物種的浮現有所貢獻。