0

0
0

文字

分享

0
0
0

金球的囚徒|囚徒困局系列(一)

林澤民_96
・2015/12/21 ・2587字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

f_10559118_1

人與人之間的競爭與合作是很難拿捏的事。很多時候,雙方合作比不合作能給各自帶來更大的好處,但是一廂情願地合作的人,卻有可能被對方視為「潘仔」或「傻瓜」(Sucker)而予取予奪。於是,在各自的利害考量下,沒有人願意合作,寧可兩輸也不願意當「潘仔」。這種困境,可以存在於人際關係,經濟交易,政治角力,國際關係,甚至自然環境的維護,在人生及社會上,可說屢見不鮮。

英國BBC電視中心製作的Golden Balls便是模擬這種困境的競賽節目。節目中,二參賽者爭取一筆獎金,例如1000英鎊。二人隔桌對坐,面前各有兩顆金球,其中一個金球裡面寫著Split(平分),另一個寫著Steal(竊佔)。如果二人均選擇Split,則獎金平分。如果二人均Steal,則獎金槓龜。而如果一人Steal而另一人Split,則Steal者獨佔全額獎金,而Split者只能抱蛋含恨而歸。此賽局可用下圖來表示:

Player B
Split Steal
Player A Split 500, 500 S, 1000
Steal 1000, S 0, 0

其中S雖然表面上也是0,其實比零還糟,因為若雙方均Steal,雖然無人得獎,畢竟互相扯平,而單方面的Split除了抱蛋而歸外,還要加上當「潘仔」的懊惱、義憤、和羞辱,所以S<0。(讀者可以自問:你寧可Steal而雙輸呢,還是Split而當「潘仔」?)如此,則理性的參賽者會算計:如果對方Split,自己的較佳策略是Steal,因為Steal會贏得全額獎金,而Split則只能贏得一半。而如果對方Steal,則自己更應該Steal,否則就要當大傻瓜了。於是,對理性的參賽者而言,Steal是一個「優勝策略」。而如果雙方均如此算計,結果就獎金就槓龜了。

「金球」節目容許參賽者在決定之前互相溝通,可是即使雙方協議Split,因為口說無憑,輕易信賴對方的承諾反而容易吃虧上當。以下這場獎金高達100,000英鎊的金球大賽即紀錄了輕信人言的苦果:

-----廣告,請繼續往下閱讀-----

Golden Balls 所顯示的困境,正是所謂的「囚徒困局」 (Prisoner’s Dilemma)。囚徒困局是賽局理論中一種非零和賽局,它反映了人際間常見的困境。這個賽局可以表現如下:

Player B
C D
Player A C RA, RB SA, TB
D TA, SB PA, PB

定義:

A,B:參賽者
C,D:策略。C=合作(Cooperate),D=不合作或背叛(Defect)
TA,RA,PA,SA:參賽者A在表中各種策略組合下的收益
TB,RB,PB,SB:參賽者B在表中各種策略組合下的收益
T=Temptation,R=Reward,P=Punishment,S=Sucker’s Payoff

賽局的假設:

-----廣告,請繼續往下閱讀-----
  1. A,B均只為自己利益著想
  2. A,B無法達成彼此信賴的有效承諾
  3. TA>RA>PA>SA
  4. TB>RB>PB>SB

賽局中,A,B二人均可以自由選擇合作或不合作兩種策略。在上列假設下,A,B均會發現不論對方合作或不合作,不合作比合作會給自己帶來較大的收益:假使對方合作,你合作可以得到收益R,而不合作則能得到收益T>R;假使對方不合作,你合作可以得到收益S,而不合作則能得到收益P>S。這樣算計的話,二人均不會合作,結果獲得P的收益。然而,二人旋即發現如果二人均合作的話,收益R比P要來得好(R>P)。可是在無法信賴對方的情況下,自己片面合作是不智的,因為對方如果還是不合作的話,對方將會得到最好的收益T,而自己將會得到最壞的收益S。於是,二人會陷於相互背叛的困境。

賽局理論中,D是所謂優勝策略(dominant strategy),也就是不論對方選擇何種策略,選擇D均會給自己帶來較大的收益。相互背叛的(D,D)策略組合是所謂的納許均衡(Nash equilibrium),也就是在(D,D)的情況下,沒有人會片面改採其它策略。可是(D,D)不是所謂的伯瑞多最佳結果(Pareto optimal outcome),因為(C,C)帶來的收益,對兩人均要比(D,D)帶來的收益要來得好。這個賽局之為困局正是因為它唯一的Nash equilibrium不是Pareto optimal。它之所以稱作囚徒困局,是因為以下的故事:

二人共同犯罪被捕而成為囚徒。檢察官要囚徒認罪,但告知他們其求刑不僅與個別囚徒認罪與否有關,也與共犯認罪與否有關:如果二人均供認犯行不諱,則證據確鑿,檢察官將求刑3年。如果二人均不認罪,因證據不足,檢察官將只能以技術性的微罪求刑1年。如果一人認罪而另一人不認罪,則檢察官會對認罪之人處分不起訴,而對不認罪之人求處重刑5年。如果把不認罪視為二囚徒之間的合作而認罪視為相互背叛,則這個故事符合如下的賽局:

Player B
不認罪 認罪
Player A 不認罪 -1, -1 -5, 0
認罪 0, -5 -3, -3

因為TA=TB=0,RA=RB=-1,PA=PB=-3,SA=SB=-5,T>R>P>S對A,B二人而言均成立,所以認罪(D)是dominant strategy。二人均會認罪(D,D)。二人於是會被檢察官求刑3年。(D,D)是為Nash equilibrium。可是(D,D)不是Pareto optimal,因為(C,C)只會被求刑1年。雖然如此,二人在無法相互信賴的情況下還是會互相背叛而認罪。這是囚徒困局的原型典故。上面Golden Balls的賽局中,TA=TB=1000,RA=RB=500,PA=PB=0,SA=SB<0,也是T>R>P>S 對A,B二人而言均成立,因此它是不折不扣的囚徒困局。

-----廣告,請繼續往下閱讀-----

Golden Balls賽局容許參賽者在決定Split或Steal之前互相溝通,這是賽局理論所謂的「訊號傳送」(signaling)機制,讓參賽者向對方暗示甚或明示自己是何種類型的玩家。賽局理論一般認為參賽者要付出相當的代價才能讓他傳送的訊號具有可信度,而廉價的訊號只是舌燦蓮花(cheap talk)而已。例如參賽者可能發誓一定會合作,但發誓伴以「斬指頭」的代價顯然要高於「斬雞頭」的代價,前者所傳送的訊號會比後者要可信得多。Golden Balls的參賽者即使信誓旦旦會Split,沒有「斬指頭」之類的行為保證,終究是舌燦蓮花,不足深信。

那麼為何有些Golden Balls參賽者願意Split?賽局理論純粹是數學理論,在實證上並沒有百分之百的預測能力。「理性」有其經驗上的分配:不同國家、文化、宗教、社會、種族、性別、收入、教育等等的人參與Golden Balls都可能做出不同的選擇。而且Golden Balls的signaling雖然是cheap talk,不同的人也可能有不同的反應,例如有些人就容易相信態度誠懇或英俊漂亮的參賽者所傳送的訊號。「理性」終究只是理論上的假設,它是否客觀事實仍有待經驗檢定。

原刊載於Tse-min Lin 的部落格

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 244 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
為什麼同伴會出賣你?從「囚徒困境」來看共犯為什麼先招了!——《大話題:賽局理論》
大家出版_96
・2023/04/22 ・1979字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

合作與私利的權衡:囚徒困境

最廣為人知的賽局理論悖論是囚徒困境,這個賽局由加拿大數學家塔克所命名。塔克教授的囚徒困境賽局就像是好萊塢的犯罪劇情片,有人提供認罪協商給兩名嫌疑犯去供出對方。這個賽局說明了為共同利益而採取聯合行動十分困難,因為人們往往追求私利。

囚徒困境賽局中的誘因屢見不鮮,很適合拿來分析許多領域的問題。從經濟學中公司的競爭,到社會學中的社會規範,到心理學中的決策,到生物學中動物競爭稀缺資源,再到資訊工程中電腦系統競爭頻寬。

囚徒困境是指兩名囚犯陷入「是否要認罪」的心理狀態。圖/《大話題:賽局理論》

阿倫和阿班因為合夥偷車而被捕。警方懷疑他們還涉嫌一起肇事逃逸案件,但沒有足夠的證據起訴他們。兩人被帶到不同的房間分開偵訊。

阿倫和阿班都有兩個可能的行動:保持沉默或認罪。因此,賽局中總共有四種結果。

-----廣告,請繼續往下閱讀-----

阿倫沉默,阿班沉默。阿倫認罪,阿班沉默。阿倫沉默,阿班認罪。阿倫認罪,阿班認罪。

刑期長短受到共犯是否認罪的影響。圖/《大話題:賽局理論》

我們可以用策略型式表達這個囚徒困境。支付矩陣中,列代表阿倫的可能行動,欄代表阿班的可能行動。我們在行與列的相交處填入每位參與者的報酬,在本例中也就是他們各自的刑期。

如果兩人都沉默,兩人都將因偷車而服刑一年。這當然不好,所以報酬是負值(阿倫:-1,阿班:-1)。如果兩人都認罪,兩人都要服刑十年(阿倫:-10,阿班:-10)。

囚徒都知道這個支付矩陣,也都知道彼此面對相同的矩陣。

-----廣告,請繼續往下閱讀-----
考慮到先認罪的人可以免去刑責,將導致四種可能結果。圖/《大話題:賽局理論》

合作或私利考量下的「最佳解」不同

這是一個同步賽局:即使並非字面意義上的同步,但由於兩人身處不同的偵訊室,做決定時也不知道對方的選擇,因此可以視為同步。

請注意,以策略型式表現賽局,並不意味著我們指出了可能會發生什麼事。我們只是列出所有可能結果,無論合理與否,並且把每個結果中參與者的報酬記下來。

現在,寫下囚徒困境賽局的策略型式後,我們可以嘗試分析可能發生的結果。

兩名囚犯就彼此的利益思考,形成「囚犯困境」的心理狀態。圖/《大話題:賽局理論》

很明顯,如果阿倫和阿班可以共同做決定,兩人會選擇一起沉默,只需要坐牢一年。

-----廣告,請繼續往下閱讀-----

但這並非均衡的結果。對阿倫來說,「認罪」的策略絕對優於「沉默」:不管他預期阿班會怎麼做,他的最佳回應都是認罪。

以個人來說,最佳的回應便是「認罪」。圖/《大話題:賽局理論》

同樣地,不管阿班預期阿倫會怎麼做,阿班的最佳回應都是認罪。

在囚徒困境中,納許均衡是兩名參與者都認罪。這個結果的標準寫法是:

{ 認罪,認罪 }

-----廣告,請繼續往下閱讀-----

前者是橫列參與者(阿倫)的行動選擇,後者是直欄參與者(阿班)的行動選擇。在均衡中,雙方都要坐牢十年。

即使雙方最佳利益為「沉默」,但在囚徒困境下卻會選擇「認罪」。圖/《大話題:賽局理論》

這屬於柏雷多效率嗎?

一個有趣的問題是,囚徒困境賽局中的納許均衡是否為柏雷多效率?這個資源分配效率的概念是以義大利經濟學家柏雷多(1848 – 1923)來命名。如果再也沒有其他可能的結果可以使至少一人變得更好,但沒有任何人變糟,這樣的結果就是柏雷多效率。

囚徒困境賽局中的納許均衡並非柏雷多效率,因為如果兩人都沉默,每個囚徒都可以變得更好。這也就是「囚徒困境」名稱的由來。

不過,在多數的賽局中,納許均衡就是柏雷多效率。例如在前面電影檔期的賽局中,沒有其他的結果能使雙方以不損及對方的方式獲得更高利益。

-----廣告,請繼續往下閱讀-----
囚徒困境並非柏雷多效率,因雙方若選擇共同沉默將能有更好的結果。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

2
1

文字

分享

0
2
1
我預判了你的預判!為什麼高手過招總會和局?——《大話題:賽局理論》
大家出版_96
・2023/04/21 ・1459字 ・閱讀時間約 3 分鐘

什麼是「賽局理論」?

賽局理論是在研究策略性互動。策略性互動也是很多桌遊的關鍵元素,賽局理論因此得名。你的決策影響別人的行動,反之亦然。賽局理論的不少術語直接取自這類遊戲。我們把決策者稱為「參與者」(player)。參與者做決定後,就採取了行動(move)。

以策略性互動為基礎的賽局理論。圖/《大話題:賽局理論》

運用模型簡化複雜世界

真實世界的策略性互動可能非常複雜。例如在人際互動中,不僅行動,包括我們的表情、聲調和肢體語言都會影響他人。

在與他人往來時,人們展現不同的經歷與觀點。這樣無以計數的變化會使得情況異常複雜,也很難分析。

藉由稱為「模型」的簡化結構,我們可以大幅縮減複雜的程度。模型雖然簡單且容易分析,但仍然捕捉了真實世界問題的某些重要特徵。選用適當的簡單模型,可以有效幫助大家學習真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----
藉由模型簡化真實世界的複雜策略性互動。圖/《大話題:賽局理論》

西洋棋可以幫助我們瞭解這些變化會讓參與(及預測)賽局變得多麼複雜。西洋棋的規則明確,雖然每一步棋的選項有限,但整體棋局的複雜度令人生畏。不過比起許多人類的基本互動,西洋棋其實簡單多了!

西洋棋儘管複雜,但比人類互動簡單多了。圖/《大話題:賽局理論》

高手過招容易和局!

像西洋棋之類的桌遊有個特性:玩家愈熟練,就容易產生平手的結局。我們如何解釋這種現象?

因為西洋棋太複雜,難以全面分析,以下我們用簡單的井字遊戲來說明一個重要特性。西洋棋和井字遊戲都有明確的勝負規則。玩家輪流落子,且可以下的地方有限。

井字遊戲無法表現西洋棋中的許多特性。但由於兩者有些共同特徵,因此井字遊戲可以幫助人們瞭解高手對陣為什麼容易產生和局。

-----廣告,請繼續往下閱讀-----
井字遊戲因為較簡單,掌握規則後就很容易平手。圖/《大話題:賽局理論》
因為井字遊戲太容易平手,因此人們開始挑戰更複雜的遊戲。圖/《大話題:賽局理論》

被簡化的世界縮影:「賽局」

賽局理論的首要關注並非西洋棋之類的桌遊,而是要增進我們對人際、對企業間、對國家間、對生物間……等互動行為的瞭解。原因是,真實的問題可能過於複雜且難以充分掌握。

因此,在賽局理論中我們創造了非常簡化的模型,稱之為「賽局」。創造有用的模型既是科學,也是藝術。

好的模型夠簡單,讓人能充分瞭解驅動參與者的誘因。同時,模型必須能夠捕捉真實世界的重要元素,以富有開創性的洞察力與判斷力決定哪些元素最為相關。

沒有模型能適用任何狀況,因為真實世界如此複雜。圖/《大話題:賽局理論》

——本文摘自《大話題:賽局理論》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。