Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

愛因斯坦與廣義相對論的誕生--《科學月刊》

科學月刊_96
・2015/11/02 ・5262字 ・閱讀時間約 10 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

作者:
聶斯特/中央大學物理系與天文所退休教授
陳江梅/中央大學物理系教授

一世紀前,偉大的物理學家愛因斯坦(Albert Einstein, 1879~1955)完成了廣義相對論,透過時空的彎曲來描述重力交互作用,這個理論毫無疑問的是物理學中最激動人心的智慧結晶。愛因斯坦在物理學上做出了許多劃時代的貢獻,例如在1905 年,年輕的他就獨立地完成了許多開創性的成果,其中有關光電效應的論文,是開啟量子物理大門的關鍵性工作,他也因此獲得1921 年諾貝爾物理獎的桂冠。然而,對一般大眾來說,愛因斯坦最著名的研究成果就是相對論,他在1905 年完成了狹義相對論,討論等速運動系統的物理特性,其中光速不變性的假設所推論出來的「時間膨脹」、「長度收縮」等奇特效應,是理論物理中令人非常著迷的現象。十年之後,愛因斯坦更將其理論推廣至加速的系統,建構出描述重力作用的廣義相對論。

學生時期的愛因斯坦

愛因斯坦在大學時期是一個相當古怪的學生,常常翹課,成績也並不突出,最後勉強達到畢業門檻,而他大部分的時間致力於獨立研究物理學中最前沿的問題。至於考試,愛因斯坦則依賴於他的同學格羅斯曼(Marcel Grossmann, 1878~1936)所做的筆記。因為愛因斯坦經常缺課,再加上似乎不夠尊重師長的態度,使得他在授課老師心中留下不良的印象。他的物理學教授韋伯(Heinrich Friedrich Weber, 1843~1912) 曾經責備他說:「你是一個很聰明的孩子,愛因斯坦,非常聰明的孩子,但是你有一個很大的缺點,就是永遠聽不進去別人對你說的任何事情。」他的數學教授閔可夫斯基(Hermann Minkowski, 1864~1909)則曾經稱他為「懶狗」。許多年後,當被問到關於愛因斯坦發表的狹義相對論時,閔可夫斯基的評論是「我真的不敢相信他能夠做到。」

SuvEinsten
愛因斯坦所就讀的蘇黎世聯邦理工學院。 Source: Shepard4711

廣義相對論的基礎

廣義相對論所討論的,是自然界中的重力,也稱為萬有引力,是人類最熟知的作用力。牛頓(Isaac Newton, 1642~1727)首先理解到,萬有引力不單單只是造成地球上萬物會向下掉落的原因,也是天體中星球運行的作用力來源。他寫下了質量如何產生重力的萬有引力公式,再加上他所提出的物體運動必須服從的三大運動定律,構成了牛頓力學的體系,主導我們對物理的認知達數百年。直到愛因斯坦發表相對論後,物理世界才又往前跨出了重要的一步。

-----廣告,請繼續往下閱讀-----

廣義相對論的理論基礎,起源於一個稱為「等效原理」的基本概念——當一個人在自由墜落的時候,他感受不到自己的重量。自由墜落是一個加速的運動狀態,而物體的重量則是重力作用的結果,因此,等效原理說明了這兩個物理現象間有一定的關聯性。這個想法給愛因斯坦很深的啟發,引導他建立了一個革命性重力理論的方向。根據愛因斯坦的說法,等效原理的靈感出現在1907 年,是他一輩子中感到最快樂的想法。

根據狹義相對論,物理學家已經理解到在牛頓力學體系中的一維時間和三維空間不再是各自獨立的,勞侖茲(Hendrik Lorentz, 1853~1928)給出了兩個相對等速運動的觀測者間,他們測量到的時間和長度的轉換關係,也就是說,時間和空間必須被看成一體,形成一個稱為「時空」的概念。

一個完整的重力理論包含兩個部分:第一,需要知道物質如何產生重力場,在牛頓的理論就是萬有引力方程式;第二,重力場是如何作用在物體上,因而改變物體的運動狀態,在牛頓的理論中就是第二運動定律。在廣義相對論彎曲時空的架構下,重力如何作用在物體的部分相對上較容易理解,即物體在彎曲時空中走最短路徑,而最短路徑在數學上可由測地線方程式算出。因此,廣義相對論的建構中最核心的問題,就是推導出物質如何彎曲時空的重力場方程式。

1927
1927 年10 月所召開的第五次索爾維會議,主題為「電子與光子」,並齊聚了當時最頂尖的物理學家,包括正中間的愛因斯坦、居里夫人(第一排左三)、勞侖茲(第一排左四)、包立(Wolfgang Pauli,第三排右四)與海森堡(Werner Heisenberg,第三排右三)等人。 Source: I Harsten

困擾愛因斯坦的難題

儘管愛因斯坦對於建立新的重力理論的物理直覺是清晰而深刻,但是要將他的想法具體的實踐出來,需要一個全新的數學架構。討論彎曲時空結構的數學工具「微分幾何」,便成了廣義相對論所需要的數學平台。但是很不幸的,愛因斯坦一開始並不十分熟悉微分幾何,以致於遲遲無法建構出具有一致性的理論。他再次向格羅斯曼尋求幫助,他拜託老同學說:「格羅斯曼,你一定要幫幫我,否則我會瘋了。」

-----廣告,請繼續往下閱讀-----

愛因斯坦開始和格羅斯曼合作,埋首於廣義相對論的建構,經過了一段時間的努力之後,愛因斯坦和格羅斯曼終於在1913年發表了著名的「綱要(Entwurf)」論文,這篇論文分為物理與數學兩部分,分別由愛因斯坦和格羅斯曼撰寫。然而,他們兩人在這篇論文中都犯下了錯誤,而這些錯誤全是起源於對彎曲時空的數學沒有能夠全盤掌握。這個新的數學領域,雖然大數學家黎曼(Bernhard Riemann, 1826~1866)早在1854 年就曾發表他在彎曲空間幾何的研究成果,但對愛因斯坦和格羅斯曼這樣的新手來說,他們只能透過可獲得的文獻,對彎曲空間的數學工具有粗略的理解,但是,他們尚未完全了解彎曲時空的數學公式之真正意涵和在他們新的重力理論當中所扮演的角色。

廣義相對論的誕生

廣義相對論的誕生,也就是推導出正確的重力場方程式的日子,發生在1915年的11 月,那一個月份,愛因斯坦在4 日、11 日、18 日和25 日分別發表了有關廣義相對論的論文,從考慮比較簡單的特殊系統再推廣到一般情形,逐步改進結果,而正確的重力場方程式則是出現在25 日的論文之中。

大數學家希爾伯特(David Hilbert,1862~1943)有關重力場方程式的論文也是在這個時間點完成,所以一直都有到底是誰先得到重力場方程式的爭論。愛因斯坦首次提出正確的重力場方程是在1915 年11 月25 日,但就在5 天之前,希爾伯特在德國哥廷根大學的一個報告中介紹了他對廣義相對論的研究成果。希爾伯特的研究主要目的是考慮重力與電磁力的整合模型,他從作用量出發,利用變分原理,進而分析理論的數學性質。

helbert
大數學家希爾伯特。 Source: Open Logic

誰先發現重力場方程式?

愛因斯坦和希爾伯特論文發表的時間十分接近,導致了誰先孰後的爭議:發現重力場方程式應歸功於愛因斯坦還是希爾伯特?有些物理學家和科學史家認為希爾伯特首先發現重力場方程式,而愛因斯坦則是在幾天之後獨立地發現了它。

-----廣告,請繼續往下閱讀-----

希爾伯特參與廣義相對論的研究起始於1915 年6 月,那年夏天,愛因斯坦訪問了哥廷根大學,並發表了一系列演講介紹他的重力理論。他和希爾伯特對理論中的問題進行深入的討論。在接下來的幾個月,希爾伯特深入研究關於愛因斯坦的理論,他很快就找到了一個優雅的數學處理方法。他寫信告訴愛因斯坦他的研究成果,而愛因斯坦則要了希爾伯特的筆記與計算的副本。

goben
哥廷根大學一景(1961 年攝)。 Source: Roger W

從愛因斯坦的回信來看,他顯然在11 月18 日前收到了這些筆記副本。但是,沒有證據可以判斷希爾伯特給愛因斯坦的筆記中是否已有愛因斯坦方程式,如果有,那麼愛因斯坦就是在自己提出這個方程式前就已經知道結果。另一種說法是,明確的重力場方程式事實上並沒有出現在希爾伯特給愛因斯坦的筆記副本裡,甚至也沒有在他11 月20日的報告中,希爾伯特是在稍後的論文校對過程時,才將愛因斯坦方程式加入到他的論文當中。

這個兩種看法在1997 年哥廷根大學的圖書館公布了有關希爾伯特在12 月6 日所做的論文校對相關文件後,更添加神祕色彩。希爾伯特的校對版論文內容和最後正式發表的版本是有些不同,最特別的是,在校對版文件中可能是包含愛因斯坦方程式的半頁手稿被人撕走了。這種狀況使得真相更加撲朔迷離,陰謀論的說法層出不窮:難道是愛因斯坦的支持者摧毀證明方程式存在的證據?抑或是希爾伯特的支持者想要掩蓋方程式不存在的事實?

無論真相為何,愛因斯坦和希爾伯特對廣義相對論的建立,都扮演著極其關鍵的角色,愛因斯坦的物理圖像清晰,動機明確,雖然所需的數學基礎和一些疑惑困擾了他許多年,但終究達到目的。希爾伯特經由愛因斯坦的介紹開始重力的研究,他的數學知識雄厚,利用作用量和變分的方法,為重力場方程式的推導開闢出一個在數學上非常簡潔的方法。他們倆人之間在1915 年的相互交流與討論,肯定對彼此的研究產生正面的影響。誰先推導出重力場方程的爭議,一開始在兩人的內心,也確實曾經激起短暫時期的不愉快情緒。然而,在他們往後的頻繁交流過程中,幾乎看不出這爭議對他們的友好關係產生任何嫌隙,或許他們終究認為,這件事並不是個值得浪費時間和友誼的議題。

-----廣告,請繼續往下閱讀-----

光路徑偏折

歷史上,牛頓最先提出光線受重力的影響,它所行進的路徑會產生偏折的可能性,在此之後,許多物理學家也都曾經做過光線路徑偏折的具體計算。回到1911 年,愛因斯坦在尚未建構出完整的廣義相對論之前,就曾經基於等效原理和他早先的理論版本,預言光線在經過太陽時會受到它的重力作用影響,而產生0.87 秒角的偏折。

對於光線經過太陽會產生偏折的觀測,在廣義相對論誕生前就已經在嘗試進行。觀測的對象是恆星所發出的光線,因為太陽光太強烈,所以可行的觀測只能在日蝕發生時進行。在1914 年7 月底,德國天文學家弗洛因德里希(Erwin Finlay-Freundlich, 1885~1964)與兩位同伴總共攜帶三組相機前去克里米亞,為將發生在8 月21 日的日蝕觀測做準備。很不幸地,德國在8 月1 日的正式宣戰開啟了第一次世界大戰,俄羅斯也出兵參與戰爭。因此,俄羅斯政府拘留了弗洛因德里希,並且沒收了他的設備,也使得這次的觀測計畫被迫中止。愛因斯坦曾經抱怨說:「決定我的科研奮鬥中最重要的結果,將不會在我的有生之年看到。」事實上,當時另一組美國的觀測隊伍並沒有受到發生戰爭的影響,可惜日蝕當天的天氣並不好,是一個不適合拍攝的陰天,因此美國隊伍的觀測過程也並不順利。

幸運的愛因斯坦

這次觀測的延遲對於愛因斯坦來說應該是一個幸運事件,因為直到1914 年,他對光線路徑偏折的計算並沒有考慮到空間彎曲所造成的效應,預測值為0.87 秒角,而這個預測值是不正確的。一年之後,愛因斯坦理解到空間彎曲的部分和時間彎曲的效應是一樣大,他修正預測值增加到1.74 秒角,是原始結果的兩倍大,而這才是正確的數值。如果在1914 年8 月弗洛因德里希成功地完成了對光線彎曲的測量,那麼他的觀測結果就會不符合愛因斯坦所做的預言,那麼愛因斯坦將會發現自己處在一個相當尷尬的位置上。

對於支持廣義相對論最關鍵的觀測結果,是英國天文物理學家愛丁頓(Arthur Stanley Eddington, 1882~1944)所領導的團隊在1919 年完成的。愛丁頓是廣義相對論在英國首要的支持者,他曾用英語寫了許多文章來介紹並推展廣義相對論。和愛因斯坦一樣,愛丁頓在當時是少數和平主義的熱衷支持者。第一次世界大戰期間,英國實行了徵兵政策,而愛丁頓寧可被判刑也不願意入伍服役參與戰爭,經過了一番的努力,他以日蝕觀測在科學研究的重要性,成功地說服仲裁庭給予他一年的免除兵役豁免權,讓他可以領導1919 年的日蝕觀測團隊。幸運地,這場戰爭在愛丁頓豁免時效過期前的1918 年底就結束了。

-----廣告,請繼續往下閱讀-----
eitindon
英國天文物理學家愛丁頓。 Source: Smithsonian Institution

在戰爭結束後的1919 年, 共有兩個團隊對當年5 月29 日發生的日蝕進行觀測,格林威治天文臺的克羅梅林(Andrew Crommelin, 1865~1939)所帶領的觀測團隊到巴西,而愛丁頓則領隊到非洲。這次的觀測進行得很順利,而觀測資料分析的結果符合了愛因斯坦廣義相對論的預測。

觀測的結果於1919 年11 月6 日在英國皇家哲學學會和皇家天文學會的倫敦聯合會議上向全世界公佈,天文學家戴森(Frank Watson Dyson, 1868~1939)總結說:「經過仔細研究拍攝的底片,我正式宣布,結果證實了愛因斯坦的預言。一個非常明確的結果顯示了光線的偏折,符合愛因斯坦重力理論的推論。」就在第一次世界大戰結束一周年的前夕,德國科學家愛因斯坦延續了英國科學家牛頓的光環,正式地將萬有引力理論推廣至廣義相對論。這消息也迅速地傳播到世界的每個角落,各地的報紙,都大肆報導這個科學史上劃時代的里程碑,而愛因斯坦也因此迅速地提升至世界名人的地位。

suneat
愛丁頓於1919 年所拍攝之日蝕照片。(Public Domain)

廣義相對論已經誕生一世紀,從它延伸出的許多有趣課題,例如黑洞、宇宙學、重力波、重力透鏡等,幫助我們更深入地理解自然界的奧祕。然而,直到現在,還有許多尚未解決的問題,期待有更多的愛因斯坦來尋找答案。無論如何,就像音樂和美術一樣,能一窺自然界運行的「美」,無疑是一個激動人心的感受。

1234〈本文選自《科學月刊》2015年8月號〉

-----廣告,請繼續往下閱讀-----

延伸閱讀:
來自深空的交響詩—重力波
時間起源與量子重力

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3735 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。