0

0
0

文字

分享

0
0
0

你不夠善良——科學衝擊哲學?惹火的道德心理學(下)

王陽翎(于非)
・2015/10/04 ・5609字 ・閱讀時間約 11 分鐘 ・SR值 580 ・九年級

【請先閱讀上篇:你不夠善良——科學衝擊哲學?惹火的道德心理學(上)

別迷信自己永遠正義

然而更大的問題也來了,假如出現部落與部落之間的族群競爭呢?每個族群都有自成一系的道德信念,不管是來自原始宗教或是道德信條,這些信念難以促成族群層面之間的合作,並且深信己方是正義的,對方是邪惡的。(或:我信的是真神,你信的是假神。)

source:Morgan4uall
source:Morgan4uall

格林將「團體可能因為自私自利,而偏好某些道德價值勝過其他價值」,稱為「偏私的公正」(biased fairness),簡單來說,就是人人總是認為自己 / 己方是對的,對方是錯的。在1982年中東貝魯特大屠殺發生後,有研究人員分別讓阿拉伯人和以色列人觀看當年同一段新聞報導,儘管內容一模一樣,但雙方完全認定新聞只偏袒對方。還有另一項關於政黨的心理實驗,喬福瑞.柯亨(Geoffrey Cohen)找來一批偏好民主黨的自由派人士,與偏好共和黨的保守派人士參與實驗。

柯亨發現,只要他將某項政策,向自由派人士說成是民主黨提出的,即使內容非常保守,自由派人士照樣贊成;反之亦然,向保守派人士說政策是由共和黨提出的,即使內容非常開放,他們也照樣贊成。事後,大部分參與者均否認,當初自己受到黨派影響,從而誤判了內容。研究意味著,自己支持一方所提出都視為對的,蓋過了對內容的思考,總之贊成「自己人」就好了。老實說,筆者極有興趣在香港試驗一下,看看自稱民主派人士以及建制派人士的反應。

-----廣告,請繼續往下閱讀-----

太誇張了吧?那麼討論死刑的話題如何?假如雙方足夠冷靜,把正、反理據看得清清楚楚,會減少對己方的盲目認同,較諒解對方的觀點嗎?曾有研究員將支持和反對死刑的詳盡理據,分發給雙方閱讀,讓他們細心考慮過後再作判斷;結果,人們看後反而加強了自己立場的信心,更加認為自己支持的理據更有說服力,對對方的觀點沒有較多諒解,情況倒是變差了。

br

格林就上述各點,再以神經科學的角度作出解讀,不論是指個人避免傷害旁人的直覺,抑或團體「偏私的公正」背後的直覺基礎。他指出神經科學權威學者之一安東尼.達馬西歐(Antonio Damasio)發現,人類不同的道德情感機制與大腦「腹內側前額葉皮質」(ventromedial prefrontal cortex,簡稱vmPFC)非常相關。假如腦區受損,病患即使看到血淋淋的恐怖場面,身受重傷的受害者,他們也會指沒有任何感覺,就是出現了情感障礙。大家別誤會,他們並非智商出了問題,而且仍然有是非對錯的相關認知,只是他們一點感覺都沒有,有點像我們知道的人格病態者(精神變態)。

再拆解「電車難題」辯中辯

還記得那多重設問的電車難題吧?格林簡直是這方面的專家。他認為第一重設問:「轉轍器難題」(switch dilemma)無甚爭議,同樣,研究電車難題的哲學家茱蒂斯.賈維士.湯姆森(Judith Jarvis Thomson)認為純就此重設問來說,以功利主義(Ulitarianism)進行道德抉擇,道德上可以接受;格林也交代全球絕大部分人也認為可以接受。(筆者當然同意,詳見《舉世爭議的「電車難題」是戲弄人的詭辯》一文。)

source:wikimedia
source:wikimedia

格林比較關心的是第二重設問:「天橋難題」(footbridge dilemma),就是推人下橋拯救路軌上五人的問題。首先,格林設計了一項實驗,透過功能性磁震造影(functional magnetic resonance imaging, fMRI)檢視受試者在閱讀、回應兩重設問時的大腦反應。一如格林所料,在天橋難題中,當人們認為自己要親手推人下橋時,大腦處理「道德情感」的腹內側前額葉活動也一併增加;反之,轉轍器難題中,當人們大都選擇殺一求五,以功利主義作出抉擇時,卻是「抑制慾望」的背外側前額葉(dorsolateral prefrontal cortex,簡稱dlPFC)活動增加,而此一區域,往往是不同實驗,需要受試者刻意自制,以理性思考時較活躍的大腦區域。

-----廣告,請繼續往下閱讀-----

此外,他指出學者馬利歐.孟德茲(Mario Mendez)與同僚找來額顳葉失智症(frontotemporal dementia, FTD)病患進行天橋難題判斷,這些患者受影響的腦區也有腹內側前額葉,亦即導致情感障礙的區域。結果,接近60% 的病患願意推人下橋,而健康人士只有20%會這樣做,前者高出三倍之多,使上述兩項關鍵實驗得到相關性支持。此外,亞米泰.薛哈夫(Amitai Shenhav)的一項關於處理恐懼反應的「杏仁核」(Amygdala)研究所示,在天橋難題中,杏仁核與人們抉擇的負面情感有正相關;格林補充,杏仁核的反應像警報器一樣,當它活躍時,也關係人們不採取功利主義抉擇。

一些急躁的朋友,或許此時已憤憤不平要問:

豈有此理﹗格林是否想說,決定不推人下橋時,只不過是非理性的情感,而推人下橋殺一救五反而是理性大腦的抉擇﹗你支持殺人嗎?太冷血了﹗

事實並非如此,格林倒是認為,我們確實可有很多理性依據,種種推論,決定不推人下橋。例如,任意犧牲旁觀者很可能令人仿效,造成社會秩序恐慌混亂,也可以詳細思考尊重生命的重要性等。但是,當我們相信是上述抽象的理性思考,驅使我們最終拒絕推人下橋,那麼,當人們接受測試時,理應是「背外側前額葉」非常活躍才對,可是事實不然,真正令不少人拒絕推人下橋的,是強烈的道德直覺。

-----廣告,請繼續往下閱讀-----

dfweffev

為此,格林設計了一個稱為「撞擊警報情境」的電車實驗,這次,路軌設計是分開兩條獨立的軌道,一條純直線軌道行駛電車,前方站有五人,不停止電車他們會被撞死;另一條獨立軌道也有一列電車,若受試者在遙遠的地方,按下轉轍器,讓電車轉向分岔路,撞死一人,觸發那裡的警報,令所有軌道立即停電,便可成功拯救那條直線軌道上的五人。你們應該很快明白,假如理性思考,這樣做根本跟推人下橋並無大分別,同樣是刻意視他人作為「一種手段、一種工具」,是有違人們一般道德信念的目的。可是,依然有86%的人殺一救五,與最初沒有爭議的第一重設問的87%幾乎一樣﹗為甚麼?這就是格林苦心重新設計,只要繞過人們敏感的道德直覺,不用想像自己推人下橋,轉轍器擺在遠方,兩條軌道分開處理,便令到人的情感反應大減,從而輕易作出抽象的功利主義抉擇。

可是,請別誤以為格林輕輕放下天橋難題,他和同事設計了一個更曖昧的版本,以突顯電車難題的弔詭之處:如果電車不停下來,就會撞上爆炸箱,炸毀水壩,淹沒一整個城市,造成數百萬人死亡。如果把一人推下去,觸發機關立即拯救數百萬人性命。你會如何抉擇?

筆者認為這版本的妙處,在於是否追求更大的善,無論事前再確信某種道德信念,還是要依據實際情況重新思考、調整。不知你如何抉擇?轉一轉事例煽動你就不理性了。

還有一個令人情理衝突的實驗。學者紹恩.尼可斯(Shaun Nichols)與約書亞.諾伯(Joshua Knobe)以兩個虛擬世界,詢問人們的責任判斷。二人設定一個 A 世界,在這世界裡,所有發生的事情都是100% 命定的。人們被問及在如此世界當中,應該為自己的行為負上完全的道德責任嗎?結果,只有5%的人回答需要負全責;這沒大不了,很合乎預期,相當理智,也根據抽象原理推論。

-----廣告,請繼續往下閱讀-----

可是,當他們具體地在 A 世界描述以下事情後,反應截然不同了:有一名為比爾的人,他迷上自己的女秘書,認定唯一跟她一起的方法,就是殺掉現任妻子以及三個小孩。他設計了一場大火,布下機關,終於將全家燒死了,順利跟秘書一起。人們再回應這事例時,面對同一個100% 被命定的世界,卻立即轉向認為,比爾需要為自己行為負全責。問題是,剛才為何95%的人斷定活在 A 世界的人不必負全責?難道那種清晰的抽象推論,突然因為觸動情感,一掃而空?

此刻我們開始明白,道德直覺影響之大,同時,無論你喜歡抽象思考道德義務、生命價值,抑或功利主義的運算推理,求最大效益,大腦主責處理的區域是「背外側前額葉」,而不是主責情感和恐懼的大腦區域,只要蒙騙人們的情感直覺,同時又忽視抽象思考,原本在推人下橋的情境不同意殺一救五的人,在繞過情感的設計之下,不知不覺會以功利主義抉擇。難怪海德特引述學者研究,無論主張功利主義的邊沁(Jeremy Bentham),或是主張義務論(Deontological theories)的康德(Immanuel Kant),都很可能患有「亞斯柏格症」(Asperger’s Syndrome),沒怎麼情感掙扎,抽離地思考問題,二人分別在於康德症狀相對輕微。因此海德特亦指,西方社會部分受深厚教育的人士,若像邊沁與康德那般聰明又略帶自閉,極易成為自由派人士,偏好抽離思考避免傷害和公平的道德原則,變成全球相對少數的「WEIRD」一族,即:西方的(Western)、高知識分子(Educated)、工業化的(Inductrialized)、富有的(Rich)、民主的(Democratic)。

總之,格林將一系列大腦研究,歸納為情感與理性交織的「雙重程序大腦」,就像一部現代攝影機,有自動模式,也有手動模式。自動模式預先設定好感光度、光圈等,方便快速拍攝; 情況猶如我們的道德直覺 / 情感直覺,是演化給我們的自動設定,抉擇飛快,一瞬間感覺已作出判斷,像大自然世界替生物存活下過億萬步棋,最後的經驗累積成高度直覺。但一些需要細緻調節的畫面,則要親自調校各項設定值;猶如我們的理性思考,細緻推考想法,分析概念,有時甚至抑制情感干擾,務求作出情理兼備的判斷,而身處現今複雜社會文化底下,若單憑遠古的直覺決策,未必正確。格林強調,在一般生活之下,對身邊親朋直覺關懷,首先保護他們,合乎情理,這並不構成甚麼問題,也有利促進團體內的和諧共處,可是,當問題觸及涉及大量團體的公共政策、環球問題,純靠直覺可能有「道德近視」的情況出現,只知維護自身陣營的信念,無助達成更大的善,凝聚共識。

該為「功利主義」平反了?

總括研究所得,格林認為我們現今對人性的了解越多,好應為一度被打成萬惡的「功利主義」平反,但由於它的名字極易受到誤解,令人誤以為功利主義無關「更大的善、快樂、幸福」,以為它不過主張「生活就是持續的算計,為每個決定加上成本與效益的計算」,甚至是一種財富最大化的想法,只要有利益可圖,犧牲少數人換取更多財富效益,難道不是應該做嗎?

-----廣告,請繼續往下閱讀-----
source:wikimedia
source:wikimedia

格林不認為這是正確解讀功利主義的取態,並不是追求更大的善有何問題,而是過往質疑功利主義的說法,不少脫離了對人性喜惡的了解,以及對生活經驗的掌握,變成虛空的概念遊戲,所以指斥功利主義者會同意,壓迫少數以換取更大利益,變相合理化奴隸社會等等。又或人們抱持功利主義信念,會否造成彼德.辛格(Peter Singer)拋出的反思,每人每天不斷將剩餘的財富物資捐獻給各地窮苦大眾,以至在城市生活的功利主義者,理應放棄更好的個人生活品質,以無盡地拯救全球貧困者?

格林對此逐一回應。例如,根據快樂研究對人性的了解,一批能夠擁有奴隸的人,透過奴役他人換取更大的效益,情況等於在經已不錯的生活水平上,增加額外的得益,在真實的研究和經驗之下,這根本不能提升甚麼快樂。另一方面,若一批人成為奴隸,即使可能是相對少數,他們失去自由和尊嚴,付出沉重體力,每天生活承受龐大壓力,在他們未能增加別人多少快樂之餘,個人的快樂將有極大損失,肯定有悲慘的結果。是故,格林並不在「可能性」上糾纏,功利主義概念如何「可能」變成奴隸社會,也不糾纏論證每一項被稱為「快樂」的事情,它最精確的概念定義如何,卻是問生活「經驗」的各種實際「品質」,是否有所提升,人們生活各類衣、食、住、行的快樂需求如何,缺乏它們後的痛苦如何,通通有相關研究、具體經驗加以支持,功利主義並不是一種玩弄虛幻概念的遊戲。筆者相信,這種略經包裝的「後果論」(consequentialism)分析方向,格林是受他的思想家導師—亞馬蒂亞.森(Amartya Sen)的啟發,將生活品質(快樂)、社會福利訴諸經驗上可實證的本位。

繼而,格林就捐獻財富給有需要人士,捐獻的程度也訴諸經驗分析。他認為一個真正合乎情理的功利主義者,必須考慮其他人共同承擔道德義務;因為只有極少數人才能承受的捐獻程度,放棄了一切生活品質而幫助他人,只會嚇怕其他人參與道德義務,如此少數人做到,同時難以廣泛持續的捐獻,根本是脫離人性,不可能是功利主義者所支持的。格林認為若要譴責一些人不肩負道德義務的,首先是那些生活奢華的人,譬如買大量禮物給自己子女,卻完全對窮小孩無動於衷,又或捐獻百萬美元給「大都會美術館」(Metropolitan Museum of Art)添加藝術品,也不幫助有需要人士,這是說不過去的。

基於上述對功利主義的詮釋,歷史遺留太多不幸誤解,格林提議以新的名字和論述,重新將之定位,將根據科學對人性的了解,考慮總體生活品質提升,訴諸經驗實證的推論方式,稱為「深度實用主義」(deep pragmatism)。假如你相信「人權」無價,但當你論述它的價值如何影響人類的福祉時,你能不扯上歷史的、生活的「經驗」作為支持嗎?還是你認為人權等道德信念,它的本質猶如「數學」公式,從基本不證自明的抽象概念,一步步嚴謹推出結論,真的是這樣嗎?懂得加以反思,才是理性學問跟純粹宗教信仰的根本分別。

-----廣告,請繼續往下閱讀-----

那麼,我們回頭再看德國總理梅克爾處理難民事件的高明,她正示範了格林主張的「深度實用主義」,梅克爾誠實地訴諸德國所能收容的難民數量,滿足人道信念之餘,未有盲目根據人道立場全面收容,也以領頭的號召力,意圖影響歐洲國家一同分擔,共同作出持續援助。這不就是恰到好處的道德「實踐」嗎?

source:wikipedia
source:wikipedia

這裡不是務求提出甚麼鐵定真理,筆者相信開放討論永遠是趨向真理的基石。不管各位知識分子所屬的學系學派為何,也不管你們是否對海德特及格林的研究感到冒犯,皆因二人或多或少認為,不少歷史上的哲學家也許脫不掉「直覺先行,決策在後」的思維模式,建構理論時免不了受湧上心頭的強烈直覺影響,再依此加上種種看似言之成理的「解釋」(這方面威爾森被譽為「先知」)。未知是否意味著,休姆(David Hume)的哲魂彷彿在震懾古今:

理性只不過是熱情的僕人。

Reason is and ought to be the servant of the passions.

-----廣告,請繼續往下閱讀-----

(後記:格林指他此著作出版,是押上了全組研究員的前途。也許他預料受全球各界熱議甚至攻擊,這分勇氣值得敬重。筆者認為這是新潮,無論如何艱難,值得我們持續地加以深思。)

-----廣告,請繼續往下閱讀-----
文章難易度
王陽翎(于非)
15 篇文章 ・ 4 位粉絲
《經濟日報》特約作者、《謎米香港》節目主持人; 鍾情心理學、神經科學,不失人文藝術濃情,無懼世道喧囂煩雜,走自己的路。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
3

文字

分享

1
4
3
為什麼「電車難題」那麼難?因為我們同時擁有理性與感性的心!——《欲望分子多巴胺》
臉譜出版_96
・2023/02/04 ・2336字 ・閱讀時間約 4 分鐘

法蘭克.赫伯特(Frank Herbert)的科幻小說經典《沙丘》(Dune)裡面有一段情節,是要看看主角能不能抑制當下的動物本能,證明自己是人。

老婦人要主角把手伸進黑盒子裡,承受難以想像的痛苦,同時拿一根毒針抵著主角的脖子,如果主角把手抽出來,就刺下毒針結束他的生命。老婦人說:「你知道動物落入陷阱的時候,會咬斷自己的腿逃走吧?但只有動物才會這麼做。人類會待在陷阱裡,忍痛裝死,這樣才能殺死設下陷阱的人,從此消滅族人的威脅。」

能不能抑制住當下的動物本能,證明自己是人?/YouTube

決定情緒表現

某些人天生就比較會壓抑情緒,部分原因,就是每個人的多巴胺受體密度和性質未必相同。

多巴胺受體決定多巴胺分泌的時候,大腦會有怎樣的改變,它跟每個人的基因有關。研究人員測量受試者腦中的多巴胺受體密度(包括受體的數量有多少,以及排列得多緊密),比較受體密度與「情緒疏離程度」(emotional detachment)之間的關係。

-----廣告,請繼續往下閱讀-----

科學家用受試者有多麼願意分享個人資訊、有多麼願意與他人交往,來測量每個人的疏離程度。結果發現,多巴胺的受體密度,與受試者的情緒疏離程度呈正相關。受體密度高的人,情緒也比較疏離。另一項研究中,疏離程度得分最高的人,認為自己「冷漠、孤傲、容易記恨」;疏離程度最低的人,則認為自己「太愛照顧別人,容易被利用」。

情緒的展現與多巴胺受體密度有關。圖/Envato Elements

人們的「疏離程度」大部分介於中間,既不冷漠,也不會天天想要照顧別人,而是依環境決定會怎麼做。當目標在我們身邊,近距離直接接觸,或者當我們關注當下,我們腦中的「當下分子」迴路就會啟動,讓我們變得溫暖而重感情。

但當目標遠在天邊,當下看不到摸不到,或者當我們進行抽象思考或關注未來,腦中的理性層面就會浮現,讓我們變得不近人情。倫理學的「電車問題」,就清楚顯示這兩種思維都在我們腦中:

失控的列車沿著軌道衝向五名勞工,如果什麼都不做,他們必死無疑。不過軌道旁邊剛好有個路人,只要把他推到軌道上讓列車撞死,列車就會減速,五個勞工就能及時逃脫。是你的話,會把路人推下去嗎?

在這種敘述情境中,大部分的受試者都無法把路人推到軌道上,他們會說即使是為了拯救五個人,也無法親手殺死一個人。他們因為腦中的「當下分子」而產生同理心,壓過多巴胺的理性計算。

-----廣告,請繼續往下閱讀-----

故事敘述的方式,讓受試者覺得路人就在自己身邊,把他推下軌道的感覺會留在手上;這時候,「當下分子」就會大量分泌,除了最疏離的人以外,幾乎都無法下手推人。

面對失控的列車,你會如何選擇?圖/Envato Elements

離得夠遠,就殺得下手

不過既然五官感受得到的周圍區域,最容易受到當下分子的影響,那麼如果逐漸遠離現場,當下分子是不是就沒那麼能夠影響決策?當我們離自己得殺的人愈來愈遠,當我們從當下分子掌控的周圍區域,退到多巴胺掌控的外界區域,我們是不是就更願意,或者說更能夠用一個人的性命來交換五個人的性命?

我們可以先從消除身體接觸開始。假設你站在一段距離之外,手裡握著一個軌道開關;電車正衝向五個人,但你只要扳動開關,電車就會駛向另一個軌道,撞死一個人。這時候,你會扳動開關嗎?

接下來請退得更遠。你坐在辦公桌前,控制全國火車的行駛路線。忽然電話鈴聲大作,幾千公里外的鐵路工人說列車失控,即將撞上五個人;你只要按下手邊的開關,就可以切換軌道,但會讓電車撞死一個人。這時候你會按嗎?

-----廣告,請繼續往下閱讀-----

最後我們來到最抽象的情境,一個「當下分子」幾乎無從作用,幾乎只剩下多巴胺的情境:你是鐵路系統工程師,正在設計各種緊急應變方案。你在鐵軌旁邊安裝了攝影機,可以即時蒐集鐵軌上的資訊;而且寫出了一個程式,可以根據當下的狀況即時切換列車軌道。你會讓這個程式在未來遇到電車問題的時候,犧牲一個人去拯救五個人嗎?

你會為了救五人,犧牲一人性命嗎?圖/維基百科

這幾個敘述方式差異很大,但結果其實都一樣:
如果要拯救五個人就得殺掉一個人,如果不想殺人就得放五個人去死。

但不同的場景引發的反應卻不相同,很少人願意親手把人推到鐵軌上;但絕大多數的人都毫不猶豫地讓程式切換鐵軌,盡量減少死亡人數。這就好像我們腦中住著兩顆完全不同的心,其中一顆心只根據理性來判斷;另一顆心則很重感情,即使知道對大局不利,也無法下手殺人。

理性的心只在乎能活下來的人愈多愈好,感性的心卻同時在意其他事情。

多巴胺迴路的活躍程度,大幅影響了我們偏向哪一顆心。

——本文摘自《欲望分子多巴胺:帶來墮落與貪婪、同時激發創意和衝動的賀爾蒙,如何支配人類的情緒、行為及命運》,2023 年 1 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。