Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

陽光、沙灘、海浪,還有發電機!

A編編
・2015/07/16 ・1389字 ・閱讀時間約 2 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

345
在夏威夷的海岸,Azura將海浪的動能轉化成電能。來源

夏威夷是著名的巨浪誕生地,各地觀光客與衝浪好手皆慕名而來。但你知道嗎,這些巨浪不只是看起來雄偉,衝起來刺激,它更是一項能被人們使用的再生能源。如今,美國在夏威夷即將使用波浪進行發電,供給島上居民使用。

1200px-2010_mavericks_competition
2010 mavericks competition by Shalom JacobovitzSJ1_8558. Licensed under CC BY-SA 2.0 via Wikimedia Commons.

用波浪發電並不是一件新奇的事,早在19世紀初期就有工程師設計出來(只有設計出來,並沒有做出來),直到70年代「沙特鴨」的出現,才開始蓬勃發展。過去,海洋能源並非顯學,但在能源問題日益嚴重的今天,漸漸受到關注。(沙特鴨,Salter Duck,又稱為「點頭鴨」,是一種凸輪外形的浮體,用途是吸收波浪的能量進而把這能量轉換成為電能,這裝置至今仍被公認是最有效率的波能吸收器之一。資料來源

波浪發電原理是擷取海浪上下震動的位能差或前進的動能,轉換成力學能推動發電機。全球可經濟發展的波浪能有2,000 TWh/年(1 TWh=1012瓦‧小時),美國能源部(DOE)表示只需轉換出5%美國海域的波浪能,就能供應美國500萬戶家庭的用電,但波浪發電機仍有許多待解決的問題,例如轉換效率、成本以及無法穩定供應。

波浪發電雖然原理簡單,卻因龐大的研發成本(海象變化多端,必需實地測試才能得到有用的數據)、維修費用,讓波浪發電機成為商人眼中惡名昭彰的賠錢貨,必須仰賴資金充裕的大型能源公司或是政府補助,才能有長遠發展。

-----廣告,請繼續往下閱讀-----

美國這項海浪發電計畫包含了Azura的原型機,由Northwest Energy Innovations製造。比起舊式的海浪發電機只能捕捉單一軸向的波動(例如上下或左右擺動),Azura可360∘捕捉海浪的複雜運動,使海浪發電效率得到提升。


Azura的模擬影片

上個月,Azura正式運作,預計會試運一年,這段期間由各個不同的研究團隊監控,其中包含夏威夷大學的研究團隊,他們曾獨立證實這種波浪發電機是有能力供電給全國電網。如果運作狀況良好,預計2017年將會運作更大型的波浪發電裝置。

大量研究團投入海浪發電的研究工作,堪稱是史上頭一遭。而美國能源部(DOE)也注意到,超過五成的美國人口居住在海岸邊,人口分布讓傳輸的消耗減少,海浪發電成為全新可行的替代能源選項。

-----廣告,請繼續往下閱讀-----

美國能源部目前正極力贊助海浪能源的研發,並舉辦「海浪能源獎」,比賽以製造出最好的海浪發電裝置為目標,並開放給大眾團隊參加。比賽報名於上個禮拜截止,共計有92個團隊通過第一階段審核,有希望獲得150萬美元的獎金。八月將會選出20個團隊進入決賽,這20個團隊將會繼續實現他們的設計。

參考文獻:

-----廣告,請繼續往下閱讀-----
文章難易度
A編編
11 篇文章 ・ 31 位粉絲
PanSci 編輯|讀物理毀三觀的科學宅,喜歡相聲跟脫口秀,因為它們跟我一樣是個笑話。

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3553字 ・閱讀時間約 7 分鐘

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
2

文字

分享

0
5
2
海洋盛宴——抹香鯨落
黑潮海洋文教基金會_96
・2023/11/05 ・3099字 ・閱讀時間約 6 分鐘

  • 文 胡潔曦|黑潮海洋文教基金會 鯨豚保育研究員
  • 本文轉載自黑潮海洋文化基金會《海洋盛宴——抹香鯨落》,歡迎喜歡這篇文章的朋友訂閱支持黑潮喔!
圖一、抹香鯨舉尾下潛

編按:本文主要內容與圖片摘錄、翻譯自文獻Three-year investigations into sperm whale-fall ecosystems in Japan,期望在頻繁目擊抹香鯨的 7 月,跟大家分享抹香鯨落的研究。

生存在深海中並非容易的事,由於深海裡缺乏陽光與有機物質,許多生物是藉著海水表層落入深海的有機物質維生。當鯨豚死亡後沉入海底,這段過程、遺體以及過程中所形成的生態系均可被稱為「鯨落」。鯨落可以說是生命的延續之源,而這些殞落至海底的鯨豚有如「金山銀山」,不僅能提供大量的有機物,同時也將許多硫化物帶入海底,造福許多海洋生命,因此也有一句話說:「鯨落,萬物生」。這篇文章透過閱讀國外文獻與整理,希望跟大家分享抹香鯨死亡之後的貢獻!

圖二、世界目前已知的鯨落位置,Implant=人工鯨落  Fossil=鯨落化石  Natural=自然鯨落(Li et al. 2022

故事的開始——集體擱淺在日本的抹香鯨

在 2002 年 1 月,日本的西南海岸發生了一起集體擱淺,共發現了 14 隻抹香鯨,而其中 12 隻抹香鯨被綁上水泥塊後,被當地政府沉入了 Nomamisaki 岬角周邊深度大約兩、三百公尺的海裡,形成了多座人工鯨落。當時有許多學者對於抹香鯨落感到好奇,究竟牠們會吸引來哪些生物?而抹香鯨龐大的遺體會需要花費多長時間分解呢?透過這項研究,或許能讓人們對大型齒鯨落的分解過程更加瞭解。

圖三、編號 12 之抹香鯨在 2003 年之手繪插圖(Fujiwara et al. 2007

事實上,在 2002 年以前,多數的鯨落研究出自於美國的加利福尼亞州外海,並以鬚鯨為主要研究對象,而這些鯨落的深度幾乎都落在一、兩千公尺深,比起這次抹香鯨落群的深度深了非常多。而這次大量出現在日本西南海域的多座人工鯨落有著種種獨特性,包含了:深度淺、是大型齒鯨的鯨落等等,也讓學者們充滿好奇心。

-----廣告,請繼續往下閱讀-----

究竟要如何長期觀察抹香鯨落呢?

閱讀至此,不知道讀者們是否有一項疑問?在兩三百公尺深的海裡,既缺乏可見光,同時也承受著數十倍的大氣壓,在這樣的條件下到底要如何觀察抹香鯨落呢?「ROV——水下探測載具」即是這個研究的一大助手,能夠幫助科學家們突破這些困難,不僅能在深海中蒐集珍貴的影像,也可以完成採集的工作。而在團隊耗費了 3 年運用水下載具追蹤其中的五隻抹香鯨後,他們也有了些有趣的收穫,透過圖四可以看到這段時間抹香鯨的外觀變化。

圖四、編號 12 之抹香鯨 a. 2003 年 7 月  b. 2004 年 7 月  c. 2005 年 7 月利用水下探測載具拍攝影像(Fujiwara et al. 2007

經過數年的追蹤後,研究團隊發現,抹香鯨落歷經分解的速度堪稱飛快!根據 2003 年的鯨落研究,學者將鯨豚分解的過程定義為下述四個階段(Smith and Baco 2003),而第一個階段到最後階段可能會歷時數年甚至到數十年,當鯨豚的遺體越大,可能耗時越長:

  1. 移動清道夫階段(Mobile-scavenger):生物會快速消耗掉鯨豚體表上的肉與脂肪。
  2. 機會主義者階段(Enrichment opportunist):生物開始進駐鯨豚裸露的骨頭及周邊富含營養的底層泥沙上。
  3. 化能自養階段(Sulphophilic):骨骼釋放硫化物,供養海洋中依靠硫化物維生的生物。
  4. 骨礁階段(Reef):在所有有機物質被消耗之後,即會進入骨礁的階段。

註解:上述中文名詞翻譯參考自國家地理頻道及國立海洋科技博物館 鯨落展區。

鯨落最快被消耗掉的部分是身上的肉跟脂肪,而這份文獻研究的 5 座抹香鯨落,肉跟脂肪在經過 1 年之後已幾乎被消耗殆盡;經過 1.5 年之後,抹香鯨落已進入化能自養階段,骨骼開始釋放硫化物質;有些大型鯨落從化能自養階段轉為骨礁期要歷經數十年,根據這項研究發現,部分抹香鯨落竟在 3 年後就能夠進入骨礁期,身上所有的有機質都被消耗殆盡,而這樣的進度相較於過去鬚鯨落的研究是非常快的!研究人員初步推測,可能是因為此處的平均水溫相較其他鯨落研究的海域高,生物分解的速度比較快。

-----廣告,請繼續往下閱讀-----

抹香鯨落上意想不到的生物多樣性

這次的研究共有發現超過百種生物聚集在抹香鯨落周邊,包含軟體動物門、多毛綱與甲殼綱的生物等,在 1.5 年後,貽貝是抹香鯨骨骼上最為豐富的生物類群(圖五)。而抹香鯨落整體的生物多樣性在到達 3.5 年時來到高峰,紀錄中共有八十多種生物出現。

圖五、位在抹香鯨脊椎骨的貽貝(Fujiwara et al. 2007

除了確認抹香鯨的腐化速度之外,研究人員也會在探測載具每次下海時採集底部的泥沙,經分析發現,抹香鯨身體下方泥沙中的硫化物濃度,隨著鯨落分解的時間越久,濃度也會逐漸提高,並吸引來大量仰賴硫化物生存的生物。為了進一步確認周遭環境的生物是否與抹香鯨身上的有差異,研究人員也將抹香鯨 10 米以內與外的生物做了比較,發現鯨落 10 米以外的物種與鯨落上的生物完全沒有重疊,也證明了鯨落的出現確實吸引來許多的生物。

鯨落,萬物生

鯨落的各個分解階段吸引了許多生物造訪,肉與脂肪等在幾個月內快速地被消耗掉,有機碎屑也能讓周邊海底的富含養分,而抹香鯨骨能釋放硫化物數年,部分大型鯨甚至可能長達數十年。「鯨落,萬物生」,在鯨豚生命的最後一章,牠們的身體緩緩沉入海底,成為了大量生物的食物來源。至 2022 年為止,目前世界已知鯨落共有約 160 座,也希望隨科技進步,人們能更深入認識鯨落為環境帶來的影響。

影片分享:美國於2019年在NOAA保護區發現的深海鯨落

-----廣告,請繼續往下閱讀-----
  1. Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A. and Okutani, T. (2007), Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology, 28: 219-232.
    https://doi.org/10.1111/j.1439-0485.2007.00150.x
  2. Li Q, Liu Y, Li G, Wang Z, Zheng Z, Sun Y, Lei N, Li Q and Zhang W (2022) Review of the Impact of Whale Fall on Biodiversity in Deep-Sea Ecosystems. Front. Ecol. Evol. 10:885572. doi: 10.3389/fevo.2022.885572
  3. https://oceanservice.noaa.gov/facts/whale-fall.html
  4. https://natgeomedia.com/environment/article/content-6001.html
  5. https://www.soest.hawaii.edu/oceanography/faculty/csmith/Files/Smith%20and%20Baco%202003.pdf
  6. http://hi.people.com.cn/BIG5/n2/2020/0409/c228872-33936490.html
-----廣告,請繼續往下閱讀-----
黑潮海洋文教基金會_96
5 篇文章 ・ 2 位粉絲
  黑潮海洋文教基金會,1998年於花蓮成立,是臺灣第一個為「鯨豚與海洋」發聲的民間非營利組織。最初以鯨豚調查為開端,多年來深耕於海洋議題、環境教育與科學調查,如同一股陸地上的黑潮洋流溫暖而堅定,期許每個臺灣人的心中都有一片海洋。