Loading [MathJax]/extensions/tex2jax.js

0

4
3

文字

分享

0
4
3

若風力、太陽能變成主要能源,如何不被無風陰天弄得全國大停電?──《牛津通識課|再生能源:尋找未來新動能》

日出出版
・2022/07/20 ・3299字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

電網:將電力輸送到各地的網路系統

在十九世紀,電力是在靠近電力需求的地方生產的,但到了二十世紀,規模經濟催生出集中式發電廠、長距離傳輸線和地方的變電站。現在,世界上大多數國家的電力都是透過電網來提供。

電網,就是用來傳輸電力的網路,像是電廠、變電廠、配電系統等等,都是電網的一環。圖/Pixabay

這套系統是為了滿足供電需求──最低需求稱為基本負載(baseload)──所設計的,由最便宜的發電機來滿足。

直到最近,發電方式通常是以燃煤為主(也有國家是以核電或水力發電為主),而且大部分的時間都在運作。會搭配其他發電廠(通常是循環燃氣渦輪發電機)來支援,以滿足每天的負載量變化,也會有可快速運作的小型燃氣渦輪或柴油發電機來應對激增的需求或是發電廠停擺等故障問題。

發電廠和變電站間的輸配電系統很重要,這可確保即使有單一線路或發電廠出現問題,仍舊能夠維持電力供應。電網有辦法將電力輸送到偏遠社區,也能獲得偏遠地區的發電。

-----廣告,請繼續往下閱讀-----

再生能源進場後,該如何和傳統電廠互相配合?

現在,太陽光電場和風場在許多電網上提供的電力占比日益升高,這正在改變對發電廠的要求。在一般情況下,一天之中混合使用再生能源和傳統發電廠的發電方式最為經濟,而不是完全使用大型的傳統發電機。

風場和太陽光電場容易受到天氣的影響,現階段該如何讓再生能源電場與一般傳統電廠配合,也是能源議題中的一大考驗。圖/Pixabay

除了提供潔淨的電力外,風場和太陽光電場的營運成本最低──這稱為邊際成本(marginal costs)──因為它們沒有燃料成本,並且會首先調用。

為了讓風場和太陽光電場達到最大使用效能,最好是搭配能夠因應電力供需變化而快速反應的其他發電廠;而且理想上,這些電廠的運作也應該符合經濟效應,運作時消耗的用電量僅占其最大負載量的一小部分。

一般來說,燃煤電廠和核電廠的數量並不會有快速的增減,而燃氣和再生能源電廠則是更好的選項。根據地點的不同,水力發電、生質能、地熱和聚光太陽能(搭配蓄熱儲能)都可以擔任靈活發電的功能。

-----廣告,請繼續往下閱讀-----

化石燃料發電廠可以儲存燃料並因應需求來提供電力。風場和太陽光電場與這些可以隨時供電──稱為可調度或固定供應──的發電廠不同,這兩者的運作都取決於天氣這項變數。

運用 AI 技術,擺脫「天氣」這個天生弱點!

儘管有時會出現風力弱和陰天的日子,然而,與一些人想像的剛好相反,擁有大量風力發電和太陽光電的電網其實能夠在需要時提供電力。

透過人工智慧(artificial intelligence,AI)來獲取良好的天氣預報,太陽光電場和風場的輸出變化通常是可以預期的,因此可得到最佳結果。

透過人工智慧的協助,可以更有效的運用電力。圖Envato Elements

當再生能源供應達到總電力需求的 30% 時,這些變化可以輕易透過裝配在電網上的快速反應發電廠來填補,以滿足供電需求的變化。

當一處 1000 兆瓦的大型發電廠意外跳電(可能是設備故障或過載),處理起來可能遠比風力發電或太陽光電的電力突然下降更具挑戰性。備用儲電站必須迅速上線,而風場和太陽光電場若是尚未達到滿載,還可以在有風和晴天的天氣迅速提高其發電量,提供額外的寶貴備用電。

-----廣告,請繼續往下閱讀-----

再生能源成為主要來源後,怎麼讓電供保持穩定?

為了提供潔淨、安全和價格低廉的電力,並且在本世紀中葉大幅減少碳排放,避免氣候變遷演變到危及生靈的程度,全球的供電必須以再生能源為主。透過增加再生能源的輸出、地理分布以及與其他電網的連結,再生能源的供電占比將可望提高到電網的 50% 左右。

在一定程度上,增加這類綠電的發電能力可以彌補天氣條件惡劣的情況,而連接大範圍的太陽光電場和風場則可以提供更平穩可靠的電力。

在歐洲,丹麥已經與挪威、瑞典或德國等國進行電力交易,以此來平衡電力供需:在他們自己的風力發電量高時出口電力,而在發電量低時則進口電力。

然而,建立洲際再生電網並非易事。過去曾經有一項 DESERTEC(沙漠科技基金會)的提案,計畫要將北非的太陽能傳送到歐洲,但由於政治不穩定,再加上不同地區和國家對規畫中的電網各有所圖,產生相互衝突的反對意見,因此難以具體實現提案。

-----廣告,請繼續往下閱讀-----
增加太陽能板的面積、建立跨國、洲際再生電網,都是維持電力供應穩定的做法。圖/Pixabay

此外,由於太陽能板的成本急劇下降,因此日照多的優勢變得不那麼重要,因為可以靠增加太陽能板的大小來彌補日照少的缺憾,這比支付長距離傳輸費用更為經濟。能夠在地方發電也等於是提供了一份供電的安全保障,不必依賴化石燃料進口。然而,廣泛架設的電網確實對於供需平衡有極大的幫助。

若是能配合供電來調整電力需求,就可降低對儲能廠的需求──這稱為「需量反應(demand response)」──或許可成為一個更便宜的選項,因為那些用來支援電力尖峰的快速反應發電廠的運作成本最高。

智慧電網:更聰明、更彈性的調整電力供應!

使用智慧電網可以讓電網營運商和用戶間進行雙向溝通,調整電力負載量,使其與供電端相等,這樣就能確定出需要從電網中取用的的需求量,或是添加量。

出現短時間停電或減少電力供應時,許多運作仍有可能繼續維持,好比那些具有熱慣性的操作──像是保持鐵或瀝青、熔融物或超市冰箱冷藏食物的溫度;或是建築物的溫度調節──或是在將零件組裝成產品前,先製造出充足的零件備量。

-----廣告,請繼續往下閱讀-----
智慧電網最重要的就是雙向的溝通來進行調整。圖/Envato Elements

同樣地,可以透過啟動電爐、大型電解槽或海水淡化廠(以幫助應對氣候變遷造成的乾旱)來增加需求量。在數位化科技的推動下,我們正處於智慧電網革命的開端,這將會對電力負載量造成重大變化,將會讓邁向再生能源的這段過渡期更為容易,並且為客戶帶來更低的成本。

另外,可以用價格差異來鼓勵客戶改變他們的電力需求。在義大利,有推行一個簡單的計畫,是以固定費用(取決於所使用的最大功率)和每度電的價格來回收發電廠的資本和配電成本以及發電成本。

以限制電力需求的方式(讓消費端的電價變得更便宜),白天必須間隔使用電熱水壺、洗衣機和烤箱等電器;如果一次全部使用,就會跳電。

這樣便可降低發電成本中最高的尖峰用電。而在離峰期(例如夜間)提供便宜電價也是一種方式。不過要達到有效調整,需要同時使用智慧電網和智慧電錶。這樣用戶端可以看到他們的消費細節,並選擇僅在低電價或優惠價格時段才使用某些電器設備。

-----廣告,請繼續往下閱讀-----

儲能設備對於提高再生能源的發電占比非常有幫助。以太陽光電場和風場這樣的組合來供應夜間用電,往往會有白天過度生產,導致電價下跌的情況。若是沒有儲能設備,必須盡可能出口過剩電力,或是以減少供電來降低損失。短期儲能可以將部分電力從下午轉移到晚上,因此小容量即可以滿足日常需求。

隨著電池成本的急劇下降,這種儲能的可用性變得越來越高,而且也開始取代那些用來補強綠電不足時的快速反應化石燃料電廠。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
日出出版
13 篇文章 ・ 7 位粉絲

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3553字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。