0

2
1

文字

分享

0
2
1

【水獺媽媽專欄:從日常學永續】我也好想像太陽一樣,可以發光又發電!

PanSci_96
・2022/11/02 ・830字 ・閱讀時間約 1 分鐘

「隨手關燈,節能減碳」這是在我們日常生活中,絕對會看見或聽見的標語!在家裡被爸爸媽媽隨時叮嚀、到學校被老師耳提面命、忘記關燈而被罵的記憶肯定不會少。

建立節能好習慣很重要,但我們現在還有哪些跟能源相關的永續行動呢?

台灣的發電來源,主要仰賴燃煤、燃氣等化石燃料,比重高達80%,但提供穩定電量讓人類使用的同時,卻也大量排放二氧化碳及空氣汙染物、加劇氣候變遷,灰濛濛的天空就是最直接的證據。

近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。

像是今年夏天,家長跟小朋友都很期待的「班班有冷氣」政策,除了讓大家可以舒適上課,也同步規劃「校校會發電」,降低對地球的負擔。

-----廣告,請繼續往下閱讀-----
近年,政府積極推動能源轉型,希望降低對化石燃料的依賴,發展再生能源,尤其是太陽光電和離岸風力發電。圖/水獺媽媽提供

不過大家有發現,學校的發電設備裝在哪裡嗎?

原本烈日長期曝曬,又熱又空的學校頂樓,竟然可以搖身一變,成為設置太陽能板的最佳基地!而當地球最豐沛的資源——陽光,照射到板內的矽晶片時,光子會撞擊電子並產生電流。

這些我們肉眼看不到的次原子粒子,卻悄悄在太陽能板中移動,而且發電的過程不會排放任何溫室氣體,也不會造成空氣汙染,非常不可思議!

陽光照射到板內的矽晶片時,光子會撞擊電子並產生電流。圖/水獺媽媽提供

也許我們都沒想過,學校可以從原本「電的消費者」變成「電的供給者」,將能源轉型落實在校園中,那麼大家趕快找個時間,去看看自己的學校,有沒有用來發電的太陽能板吧!

隨手關燈,一起節能愛地球!圖/水獺媽媽提供
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3548字 ・閱讀時間約 7 分鐘

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
2

文字

分享

1
2
2
最安全的核電廠?小型核電廠 SMR 用發電量換安全性,遇到停電也不怕?
PanSci_96
・2023/06/03 ・2582字 ・閱讀時間約 5 分鐘

隨著核電廠陸續退役,台灣也逐漸邁向零核家園,郭台銘突然提出的「一縣市一核電」把核能議題的熱度重新炒到高峰。

雖然看似激進,但有人認為如果是郭董提到的「小型核電廠 SMR」的話,或許就有可能。這個 SMR 到底是什麼?它安全嗎?再者,它真的是核電的未來嗎?

實際上已經有人成功運行小型核電廠,並且已經併網發電了,他們是怎麼做到的?

小型核電廠是什麼?

台灣現在僅存,還在運作的核電廠就是核三廠,核三有兩部機組,每個機組的發電量大約為 950MW。

-----廣告,請繼續往下閱讀-----

小型核電廠正式的名稱是「小型模組化反應爐」SMR(Small Modular Reactor),發電量通常在 20~300 MW,比一般核電廠小上許多。還有甚至更小,發電量 1~20 MW 的 MMR(Micro Modular Reactor)的反應爐。

奇怪,發電量怎麼越發展越小了呢?這樣不就得要蓋更多核電廠?

小型核電廠的特點就是小發電量,因為這能創造三個優點:安全、造價便宜、易組裝。

核能那麼危險,為什麼還要用?

這三個優點實際上就是現在核電發展的最大瓶頸。核能發電也已經有 60 年歷史了,但至今全世界的發電量中,核電也只佔大約 10%。最大的問題不外乎就是安全性、造價昂貴和建造時間久。

-----廣告,請繼續往下閱讀-----

就算撇除安全性,漫長的建設時間與昂貴的發電成本,是讓許多電力公司卻步的原因之一。根據能源研究公司 BNEF(彭博新能源財經)的調查,從 2009 年到 2021 年,12 年間核能的建設成本增加了 36%;加上核電廠動輒 5~10 年的建設時間,就算核能是屬於低碳排的發電方式,大家也都更傾向選擇發展成熟的再生能源。

核能有一個最大的優點,那就是穩定持續發電。太陽能與風力這些再生能源容易隨天氣與時間影響發電量,反之核能屬於基載電力,本來就與風力、太陽能定位不同。

太陽能與風力等再生能源易隨天氣與時間影響發電。圖/Envato Elements

小型核電廠如何克服安全性?

要好要快也要便宜,除了穩定與低碳,還想要兼顧安全跟造價低的核電,小型核電廠真的是那個完美的選擇嗎?

小型核電廠 SMR 主打的特點就是一個字,小!只要夠小、功率降低,反應爐就不會一口氣釋放太多的熱,甚至能免除外部冷卻設備,靠自然循環降溫。

-----廣告,請繼續往下閱讀-----

福島核電廠發生意外的主因就是海嘯破壞了核電廠中做為緊急電源設備的發電機與電池,導致冷卻系統失效,最後反應爐內的溫度無法抑制、不斷竄高,將水分解成了易燃的氫氣,產生爆炸。

如果 SMR 的反應爐可以撇除對外部冷卻系統的依賴,靠自己就能降溫,就能最大程度避免發生爆炸以及爐心熔毀的事故。

我們以目前 SMR 發展最成熟的美國公司 NuScale 為例,在他們發展的 60MW 反應爐中,含有 37 個燃料束,整個反應爐高約 17.8 公尺,直徑約 3 公尺。這個大小甚至可以在工廠製造,透過貨車或火車運送至預定地再快速組裝起來,大幅減少建造的時間與成本。

NuScale 把水循環系統都包在了反應爐,一次冷卻劑藉由熱對流上下循環,完全不需要幫浦,減少停電時產生的風險,一次冷卻劑的熱則會傳給二次冷卻劑,讓二次冷卻劑變為蒸氣推動渦輪發電。

-----廣告,請繼續往下閱讀-----

如果真的遇上斷電事故,反應爐也有緊急冷卻系統,直接將整個反應爐泡在大水槽中;根據計算,水會在 30 天後完全蒸發,而此時的反應爐功率已經降低為原本的 4% 以下,只要靠空氣循環就能穩定溫度。

福島第一核電廠事故主因是由於海嘯破壞了做為緊急電源設備的發電機與電池。圖/維基百科

中國的小型核電廠是怎麼做到的?

而現在,在中國已經有第一座陸上 SMR 併到電網了!2021 年年底,中國山東省「石島灣高溫氣冷堆核電站示範工程」正式併網發電,發電功率 200MW,雖然發電廠的總體積不小,但以它的發電功率及主打安全的設計,是實實在在的一座 SMR。

所謂的「高溫氣冷堆」,指的是流經燃料棒,充當冷卻劑與熱交換的材料,所使用氣體如:氦氣。與壓水式反應爐用水作為冷卻劑的最大差別在於不僅熱轉換效率更好,也不用擔心水因高溫氣化而有爆炸風險,故可承受更高的反應溫度。

比起傳統反應爐,高溫氣冷堆可以用更少的鈾 -235 進行反應,也就是能在燃料棒中有更多的鈾 -238 可以在溫度飆高時吸收掉多餘中子,加上高溫氣冷堆本身就能承受高溫的特性,如果真的遇到失去電力的情況,整個反應堆的溫度,也會穩定在 1600℃ 上下。

-----廣告,請繼續往下閱讀-----

除此之外,石島灣核電廠的設計十分有趣,是球狀反應爐。在如同沙漏般的大反應爐中,燃料棒被做成了一顆顆直徑約 6.7 公分的燃料球,兩萬七千顆燃料球像沙漏中的沙子一般填充在反應爐內。

鈾燃料會被包裹在球狀構造的中心,外頭則是作為中子減速劑的石磨;作為冷卻劑的高溫氦氣會從球的中間通過帶走熱量,燃料球可從下方取出,並從上方填充。

不過,高溫氣冷堆能否成功,還需要許多時間觀察,例如石磨包裹的燃料球是否容易摩擦造成破裂,都是需要進一步注意的。

燃料棒被做成直徑約 6.7 公分的燃料球。圖/PanSci YouTube

小型核電廠的未來?

除了中國外,各國也都在發展不同形式的 SMR,甚至有人在發展功率 20MW 以下的微型核子反應爐 MMR。例如美國愛達荷國家實驗室正在建造的 MARVEL 反應爐,以及核能公司 Radiant,它們正在打造貨櫃大小、可以隨拉隨走的 MMR,希望能取代社區停電時使用的高污染柴油緊急發電機。

-----廣告,請繼續往下閱讀-----

不論是小型還是微型核電廠,除了技術還有待發展,成本是否能壓低,也是個重要指標。當然,還有另一個大魔王,就是核廢料問題,還等著被解決。

根據研究推算,NuClear 各種機型每單位能量產生的核廢料可能會是傳統核電廠的 5.5~30 倍不等,球狀反應堆的體積因為球狀包裹物的設計,核廢料的體積也是明顯可見的變大,而這些核廢料的處置問題也是全球都在面對的問題。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1