網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

咖啡因生產線的趨同演化

寒波_96
・2015/06/13 ・2760字 ・閱讀時間約 5 分鐘 ・SR值 558 ・八年級

既然咖啡因正是以咖啡為名,2014年這篇中果咖啡(Coffea canephora)基因組定序的論文[1],標題除了咖啡基因組外,還加上「咖啡因生合成的趨同演化」,似乎是再自然也不過的事。可惜《咖啡為何要合成咖啡因?咖啡的基因體還說了什麼》一文對這篇論文的內容多有誤會,因此特別為文說明。

 咖啡因製程的趨同演化

趨同演化的意思是,演化上沒有直接親緣關係的生物,卻擁有類似的特徵(也就是同功演化),例如鯨魚是哺乳類,與魚類不親,但兩者都演化出適應水生生活的身體構造。用鯨魚跟魚的身體構造舉例只是方便,事實上,趨同演化講的是特徵,不限於器官,因此不同種植物各自演化出製造咖啡因的能力,也是趨同演化。

圖一
圖一

什麼是「製造咖啡因的能力」?咖啡因是多種植物的次級代謝產物,光是在被子植物旗下的真雙子葉植物(eudicots)中,至少就有3種會合成咖啡因:咖啡、茶、可可。咖啡因是由xanthosine經歷4步化學反應,由4個不同酵素加工而成(見圖一),第一、第三、第四步的酵素,都屬於甲基轉移酶(N-methyltransferases ,縮寫NMTs),能製造咖啡因的植物,都配備這些替化合物加上甲基的酵素。

看看這些真雙子葉植物,彼此親緣關係接近的物種,只有一種能合成咖啡因,反而是親戚關係很遠的不同物種,各自能夠合成咖啡因(見圖二左),這有兩個可能:第一、這是沒有直接親戚關係的咖啡、茶、可可趨同演化所造成;第二、這些植物的共同祖先會製造咖啡因,只是後來大部分植物都喪失這個能力,只剩少數幾種保留了祖傳祕技。

圖二
圖二

怎麼知道製造咖啡因的能力是由不同物種獨立演化出來?這時候就要把不同植物參與合成咖啡因的基因,通通擺在一起畫演化樹,以咖啡來說,第一個加甲基的酵素叫作XMT,第二個叫MXMT,第三個是DXMT,這些酵素在其他植物中,步驟上都有其對應的酵素基因。

若是畫出演化樹做出來的親緣關係,不同植物的第一個酵素被歸成一群,第二個被歸成另一群,第三個也被歸成自己一群,那麼那麼就可以判斷,各種植物的共同祖先是先有這套製程,後來才分化成不同的種;反過來講,假如每種植物參與咖啡因製程的酵素,都各自成群,就意謂這些基因是植物分家以後才各自產生。

咖啡整個基因組定序後,發現能跟製造咖啡因的NMT(確定有5個)歸在一起的共有23個基因,茶與可可各自有6個基因參與其咖啡因製造,這一共35個基因的演化樹顯示,咖啡的23個自己一群,茶與可可各6個也獨自一群(見圖二右),意思是,這3種能合成咖啡因的植物,製程應該是各自獲得,也就是趨同演化的結果。

雖然這篇論文的表達法有點聳動,加上報導推波助瀾[2] [3] [4],容易讓讀者誤會這次發現咖啡因製程的趨同演化,是對本來完全未知的大突破,不過其實早在2006年就有人做過類似的分析[5],歷來也有數篇論文提過這個說法[6] [7],只是以前的分析比較簡單,沒有這回這麼全面。

 基因家族演化史:繁衍與搬家

基因怎麼來的?絕大多數基因,都是由已經存在的基因複製生成,可以追溯到同一個基因祖先複製而來的眾多基因,稱作基因家族(gene family),成員間彼此是「同源」的關係(可以跟趨同演化的「同功」關係對照),在咖啡中,參與咖啡因合成的NMT基因屬於一個有23位成員的大家族。

圖三
圖三

這23個基因,有13個基因分成3群,各自以串聯的方式排列,分佈在基因組不同的3個地方,第一號染色體上有兩群,一群5個(藍色),另一群4個(綠色),第三群4個則位於第九號染色體上(紅色);另外10個則是散佈在基因組各處(見圖三左)。假如幾個同源基因在染色體上是串聯排列,演化樹上彼此的親緣關係又最接近,那麼就能合理的推測,它們當初是由串聯複製(tandem duplication)所生成。

由基因在染色體上的位置,以及彼此間的親緣關係,可以追溯這個基因家族演化的歷史:這3群基因一開始都位於第一號染色體(藍色),藉由串聯複製誕生,後來一部份位移到第九號染色體(紅色),另一部份位移到第一號染色體的其他地方(綠色),才變成我們今天看到的3群,它們雖然在染色體上位置隔很遠,彼此間的親緣關係卻很密切(見圖二右基因的顏色分佈)。

這些位移也導致咖啡幾個參與咖啡因合成的關鍵基因(CcXMTCcMXMTCcDXMTCcMTLCcNMT3),位於染色體上不同的位置,雖然基因隔很遠,但酵素產物當然還是可以一起工作,它們在咖啡各個部位與生命週期的表現量,也是全家族裡最高的(見圖三右)。

有利生存的演化力量:正向選汰

突變是造成生物體個體差異的來源,突變的效應可分為三種,有利、中性(沒有利也沒有害)、有害,假如完全沒有任何外力影響,突變會隨機發生並留在基因組中。然而現實是突變發生後,若是這個突變有害,改變是不好的,那麼帶有這個突變的個體不容易留下後代,這個突變也就不會保留在基因組中傳遞下去,這個過程稱為「淨化選汰(purifying selection)」,許多功能上很重要的基因都有這個特徵。

反過來,假如某個突變對生物有利,增加這些個體留下後代的機率,這時改變是好的,這個突變也因此有機會保留在這種生物的基因組中,甚至最終從小眾成為這種生物的主流,這個過程就是「正向選汰(positive selection)」。有很多種方法能計算DNA序列受到的外力影響,不同的方法,不同的比較對象,常會算出不一樣的結果。

這篇論文在偵測參與合成咖啡因的基因,受到何種演化外力影響時,是比較茶、可可、咖啡各自的NMT基因群,發現通往咖啡這群23個基因的分支有受到正向選汰的跡象,並借此推論獲得生成咖啡因的能力,在演化上對咖啡有利。

個人意見是,這個分析的確能告訴大家這「一整群23個基因的共同祖先」,在歷史上可能受過正向選汰,但這不等於「製造咖啡因的這條合成路徑」有受到正向選汰,畢竟正向選汰發生的時候,咖啡還沒有這條咖啡因生產線,要下這種結論,還需要更多分析。

比較合理的推論是,當初這些NMT基因的共同祖先,產生某些突變,可能有利咖啡的生存,後來這個基因在咖啡的基因組中大量串聯複製,產生很多咖啡限定的同源基因,這些複製品之後各自演化出不同功能,包括一條咖啡因的生產線。

總之,這篇論文的重點是定序出咖啡的基因組,並再度確認咖啡、茶、可可的咖啡因製程是趨同演化的產物,至於這些參與其中的基因怎麼改變,怎麼演化,就留待未來更多研究告訴我們了。

參考文獻:

  1. Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., … & Argout, X. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 345(6201), 1181-1184.
  2. Coffee genome sheds light on the evolution of caffeine
  3. Coffee got its buzz by a different route than tea
  4. Coffee genome sequenced, caffeine genes abound
  5. Yoneyama, N., Morimoto, H., Ye, C. X., Ashihara, H., Mizuno, K., & Kato, M. (2006). Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Molecular Genetics and Genomics, 275(2), 125-135.
  6. Ashihara, H., Sano, H., & Crozier, A. (2008). Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 69(4), 841-856.
  7. Pichersky, E., & Lewinsohn, E. (2011). Convergent evolution in plant specialized metabolism. Annual review of plant biology, 62, 549-566.

更多資訊可以參考作者部落格粉絲團

文章難易度
寒波_96
156 篇文章 ・ 424 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。


0

0
0

文字

分享

0
0
0

Omicron 變種病毒從哪來?打疫苗有用嗎?Omicron相關研究彙整

台灣科技媒體中心_96
・2022/01/22 ・2931字 ・閱讀時間約 6 分鐘

國內境外移入已出現變種病毒 Omicron 案例,引發國人擔憂。至去年 12 月中為止,我們僅略知 Omicron 會造成曾染疫者再次染疫的風險增加,不過,初次感染比率卻下降,而 Omicron 病毒的傳播力尚待研究證實。

另一方面,Omicron 變種病毒從去年底爆發全球疫情至今,大家最關注的就是新冠疫苗的保護力是否會因為 Omicron 病毒而失效。科學家在 2021 年底初步用施打疫苗的血清做測試,發現這些血清對 Omicron 病毒的抗體反應有下降;但台灣科技媒體中心綜整至今(2022)年陸續發布尚未同儕審核的預印本研究,發現人體由疫苗或感染病毒獲得的 T 細胞免疫反應,並沒有因為 Omicron 變種病毒而受到太大的影響,表示人體過去打疫苗或受新冠病毒感染後,仍帶有一定程度的保護力。

人們施打疫苗或受新冠病毒感染後,面對Omicron 仍帶有一定程度的保護力。圖/envato elements

「台灣科技媒體中心」彙整 Omicron 相關科學文獻,提供國人參考,增加對最新變種病毒的認識。

Omicron 從哪來?這次變種有什麼特徵?

Omicron 變種病毒在 2021 年 11 月 26 日,由 WHO 正式命名。科學家觀察 Omicron 的序列時發現,它與之前的變種病毒相較,突變位置的數量最多。造成全球大流行的 Beta 和 Delta 病毒,改變棘蛋白功能的突變分別是 10 個和 9 個,而 Omicron 有 36 個,這是引起科學家們擔憂的最主要原因。

研究發現,Omicron 病毒在南非,「再感染」的風險增加,但這並不能說明是因為 Omicron 病毒的傳播力變強。南非流行病模擬暨分析中心(SACEMA)於 12 月 2 日,發表尚未經同儕審核的研究,根據 11 月 1 日至 27 日間的數據指出,南非當地曾經感染新冠病毒者,又再感染 Omicron 病毒的風險較高。推測應是從自然感染新冠病毒獲得的免疫力,對抗 Omicron 的效果下降。該研究提醒,雖然再感染率上升,初次感染比率卻下降,研究無法回答再感染率增加的原因,也無法說明 Omicron 免疫逃脫的程度。

南非國家傳染病研究所(NICD)病毒學家潘妮.摩爾(Penny Moore)認為,南非的新冠疫苗覆蓋率較低,再感染率高,所以關鍵在於感染後的症狀與重症程度。雖然目前 Omicron 在南非案例增加快速,但在英國主要流行的變種病毒還是 Delta,因此很難從案例數字看出 Omicron 的傳播狀況。

(示意圖)圖/envato elements

Omicron 會讓疫苗失效嗎?

目前科學家是依據觀察抗體量,來判斷疫苗的作用,而其中的原理,長庚大學臨床醫學研究所教授顧正崙說明:在對抗致病性微生物的戰爭中,後天免疫系統由 B 細胞產生的抗體與 T 細胞的細胞免疫,組成兩個交叉火網。新冠疫苗可以誘發 B 細胞產生抗體,抗體主要中和病毒預防感染。

Omicron 由於在棘蛋白上有高達 30 個以上的突變,由疫苗誘發中和抗體的能力對 Omicron 的結合能力下降,這點也在大量的體外抗體中和實驗中所證實,解釋為什麼接受過疫苗的人仍會被 Omicron 感染;尤其是 AZ 疫苗這種抗體誘發抗體能力較低的疫苗,幾乎沒有辦法有效預防感染。

國立陽明交通大學微生物及免疫研究所退休教授 黃麗華 也說明,相反的,T 細胞辨識的不是棘蛋白結構,而是呈現在細胞表面上的小片段蛋白質(約 10~24 個胺基酸)。棘蛋白中,約估有數十條小片段可被呈現在細胞表面,可被輔助型及殺手型 T 細胞所辨識。

Omicron 病毒在棘蛋白上雖然有 30 多個突變點,但其中可能影響T細胞功能的分別只有 28% (輔助型 T 細胞)及 14% (毒殺型 T 細胞)而已。換言之,絕大部分因疫苗引發的 T 細胞仍可充分辨識被 Omicron 病毒感染的細胞、並且將之清除。T 細胞反應沒有因 Omicron 病毒而受到太大的影響。(但若未來突變持續增加,呈現在細胞表面上的小片段蛋白質受到更多影響時,T 細胞反應有可能也會隨之降低。)

Omicron 的突變能讓抗體結合力下降,但對T細胞的辨識功能影響不大。圖/envato elements

這樣的研究也解釋了為什麼 Omicron 病毒雖然能造成接受疫苗後的人得到突破性感染,造成感染人數大幅上升,但是由於 T 細胞免疫還是能有效對抗感染,比起未接種疫苗者,這些確診者多為輕症或無症狀。

我應該接種第三劑疫苗嗎?第三劑如何挑選?

中興大學獸醫病理生物學研究所所長吳弘毅 指出,Omicron 會快速流行有許多原因,例如南非疫苗覆蓋率低,各國的防疫措施不同也是影響的重要因素。而判斷 Omicron 影響疫苗效果的關鍵在於,疫苗是何時施打的,因為較早施打疫苗者產生的抗體會逐漸下降。國內病毒專家施信如 則表示,台灣現在的相對優勢是,大多數人最近已施打完第二劑,保護力較高。

但兩人皆認為,提高現階段的保護力,國內最早施打疫苗的第一線人員與高齡老人,可加打第三劑作好保護、提升抗體濃度。另外,較早施打 AZ 疫苗的人,也需要盡快打第三劑。

在第三劑挑選上,施信如說明,AZ 疫苗是利用「腺病毒載體」,免疫系統再次辨認腺病毒時容易消滅疫苗載體,而減低 AZ 疫苗的效果,可能不適合作為第三劑。反過來說,原先打 mRNA 疫苗的,可以第三劑再打 AZ 疫苗,也應該考慮其他種類和品牌的疫苗,包含 Medigen(高端)與 Novavax,蛋白質疫苗也可以是很好的選擇,而不是僅限 AZ、BNT 和莫德納。

國內最早施打疫苗的第一線人員與高齡老人,可加打第三劑作好保護。圖/envato elements

此外她也提醒,疫苗施打策略應該考量全球疫苗的整體覆蓋率,富國可以一直補打第三劑疫苗,但這次 Omicron 疫情來自的非洲,相對之下較沒有量能施打第三劑,應要趕緊提升其他各國(窮國)第二劑疫苗的施打率,並持續關注這些疫苗覆蓋率低的國家的病毒變異。

吳弘毅則表示,以整體來看,未來,我們可能需要如同流行性感冒疫苗一樣,每年固定的月份同時補打新冠疫苗,讓全球的抗體或免疫能力同步。

Omicron 的研究還在進行中

有關 Omicron 的突變對傳播力、各廠牌疫苗的影響,以及感染後的情況,科學證據都還在累積當中。「台灣科技媒體中心」強調,目前應有效評斷最新研究證據的可信度與推論程度,國人不宜在未有足夠證據的狀況下,急於做出對於 Omicron 病毒的評判。

施信如與吳弘毅也表示,從現在 Omicron 有限的資料來看,Omicron 是否會對台灣造成嚴重影響仍未知,必須考量台灣的疫苗覆蓋率、防疫策略以及醫療量能。同時,台灣也須嚴密監測各國 Omicron 的疫情狀況和最新研究,以協助政府進行政策判斷。至於一般民眾則需有心理準備,防疫是長期的工作,勤洗手和戴口罩仍然是最重要的防疫基本方式,如此才能盡量降低接觸病毒的量。

勤洗手和戴口罩仍然是最重要的防疫基本方式。圖/envato elements

台灣科技媒體中心_96
141 篇文章 ・ 21 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。